![](/common/images/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
http://functions.wolfram.com/07.22.03.9371.01
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
HypergeometricPFQ[{-(19/4)}, {-(1/2), 9/4}, -z] ==
(1/(22083010560 z^(5/4))) ((-Sqrt[Pi]) (-808782975 - 11091880800 z +
49297248000 z^2 + 150239232000 z^3 + 32779468800 z^4 + 1553989632 z^5 +
16777216 z^6) FresnelC[(2 z^(1/4))/Sqrt[Pi]] +
2 z^(1/4) ((-(808782975 - 812326320 z + 7793210880 z^2 + 1961533440 z^3 +
96141312 z^4 + 1048576 z^5)) Cos[2 Sqrt[z]] +
4 Sqrt[z] (-269594325 + 1946702160 z + 9042992640 z^2 + 2030936064 z^3 +
96927744 z^4 + 1048576 z^5) Sin[2 Sqrt[z]]))
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["19", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["9", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["22083010560", " ", SuperscriptBox["z", RowBox[List["5", "/", "4"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "808782975"]], "-", RowBox[List["11091880800", " ", "z"]], "+", RowBox[List["49297248000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["150239232000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["32779468800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1553989632", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["808782975", "-", RowBox[List["812326320", " ", "z"]], "+", RowBox[List["7793210880", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1961533440", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["96141312", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "269594325"]], "+", RowBox[List["1946702160", " ", "z"]], "+", RowBox[List["9042992640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2030936064", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["96927744", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 9 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["19", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["9", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 22083010560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1048576 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 96927744 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2030936064 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9042992640 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1946702160 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 269594325 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1048576 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 96141312 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1961533440 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7793210880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 812326320 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 808782975 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16777216 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1553989632 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 32779468800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 150239232000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 49297248000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11091880800 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 808782975 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 19 <sep /> 4 </cn> </apply> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 9 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 22083010560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1048576 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 96927744 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2030936064 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9042992640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1946702160 </cn> <ci> z </ci> </apply> <cn type='integer'> -269594325 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1048576 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 96141312 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1961533440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7793210880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 812326320 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 808782975 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1553989632 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 32779468800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 150239232000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 49297248000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11091880800 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -808782975 </cn> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/clear.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| | ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["19", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["9", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "808782975"]], "-", RowBox[List["11091880800", " ", "z"]], "+", RowBox[List["49297248000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["150239232000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["32779468800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1553989632", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["808782975", "-", RowBox[List["812326320", " ", "z"]], "+", RowBox[List["7793210880", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1961533440", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["96141312", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "269594325"]], "+", RowBox[List["1946702160", " ", "z"]], "+", RowBox[List["9042992640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2030936064", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["96927744", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], RowBox[List["22083010560", " ", SuperscriptBox["z", RowBox[List["5", "/", "4"]]]]]]]]]] |
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Date Added to functions.wolfram.com (modification date)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/common/images/spacer.gif) |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|