|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.9527.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(19/4)}, {5/2, 21/4}, -z] ==
(Sqrt[Pi] (4222757010346875 + 6682164939450000 z + 15839205782400000 z^2 -
118266069841920000 z^3 + 567677135241216000 z^4 +
336401265328128000 z^5 + 39431650148352000 z^6 + 1445927583744000 z^7 +
18360985190400 z^8 + 68719476736 z^9) FresnelC[(2 z^(1/4))/Sqrt[Pi]] -
2 z^(1/4) ((-(-4222757010346875 - 2177890795080000 z -
9855505820160000 z^2 + 22431782880460800 z^3 +
19012623011020800 z^4 + 2383850231562240 z^5 + 89310489477120 z^6 +
1143535042560 z^7 + 4294967296 z^8)) Cos[2 Sqrt[z]] +
4 Sqrt[z] (1407585670115625 + 1583920578240000 z -
9515409415142400 z^2 + 32351906016460800 z^3 + 20597275960934400 z^4 +
2447993450004480 z^5 + 90157067796480 z^6 + 1146756268032 z^7 +
4294967296 z^8) Sin[2 Sqrt[z]]))/(545495206330368000 z^(17/4))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["19", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["4222757010346875", "+", RowBox[List["6682164939450000", " ", "z"]], "+", RowBox[List["15839205782400000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["118266069841920000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["567677135241216000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["336401265328128000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["39431650148352000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1445927583744000", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["18360985190400", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "4222757010346875"]], "-", RowBox[List["2177890795080000", " ", "z"]], "-", RowBox[List["9855505820160000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["22431782880460800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["19012623011020800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2383850231562240", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["89310489477120", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1143535042560", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]]]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1407585670115625", "+", RowBox[List["1583920578240000", " ", "z"]], "-", RowBox[List["9515409415142400", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["32351906016460800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["20597275960934400", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2447993450004480", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["90157067796480", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1146756268032", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["545495206330368000", " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["19", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["5", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["21", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 68719476736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18360985190400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1445927583744000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 39431650148352000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 336401265328128000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 567677135241216000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 118266069841920000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15839205782400000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6682164939450000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4222757010346875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4294967296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1146756268032 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 90157067796480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2447993450004480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20597275960934400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 32351906016460800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9515409415142400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1583920578240000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1407585670115625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4294967296 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1143535042560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 89310489477120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2383850231562240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19012623011020800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22431782880460800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9855505820160000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2177890795080000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 4222757010346875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 545495206330368000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 19 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 68719476736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18360985190400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1445927583744000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 39431650148352000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 336401265328128000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 567677135241216000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 118266069841920000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15839205782400000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6682164939450000 </cn> <ci> z </ci> </apply> <cn type='integer'> 4222757010346875 </cn> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1146756268032 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 90157067796480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2447993450004480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20597275960934400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 32351906016460800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9515409415142400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1583920578240000 </cn> <ci> z </ci> </apply> <cn type='integer'> 1407585670115625 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1143535042560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 89310489477120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2383850231562240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 19012623011020800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 22431782880460800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9855505820160000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2177890795080000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -4222757010346875 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 545495206330368000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["19", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", FractionBox["21", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["4222757010346875", "+", RowBox[List["6682164939450000", " ", "z"]], "+", RowBox[List["15839205782400000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["118266069841920000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["567677135241216000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["336401265328128000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["39431650148352000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1445927583744000", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["18360985190400", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["68719476736", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["FresnelC", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "4222757010346875"]], "-", RowBox[List["2177890795080000", " ", "z"]], "-", RowBox[List["9855505820160000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["22431782880460800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["19012623011020800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2383850231562240", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["89310489477120", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1143535042560", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]]]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1407585670115625", "+", RowBox[List["1583920578240000", " ", "z"]], "-", RowBox[List["9515409415142400", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["32351906016460800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["20597275960934400", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2447993450004480", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["90157067796480", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1146756268032", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], RowBox[List["545495206330368000", " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|