Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=-15/4, b1`>=-11/2 > For fixed z and a1=-15/4, b1`=3/2





http://functions.wolfram.com/07.22.03.a87c.01









  


  










Input Form





HypergeometricPFQ[{-(15/4)}, {3/2, 23/4}, z] == (19 (2 Sqrt[z] (23283371986875 + 10370908548000 z - 2911132224000 z^2 - 1976041267200 z^3 + 237095623065600 z^4 - 169299777945600 z^5 + 19590587351040 z^6 - 582504939520 z^7 + 4294967296 z^8) BesselI[-(1/4), Sqrt[z]]^2 - (69850115960625 + 137550997584000 z - 36521476992000 z^2 + 13549997260800 z^3 + 158083301376000 z^4 - 157984122470400 z^5 + 19233735966720 z^6 - 579820584960 z^7 + 4294967296 z^8) BesselI[-(1/4), Sqrt[z]] BesselI[3/4, Sqrt[z]] - 2 Sqrt[z] (-69850115960625 + 11462583132000 z - 10638865036800 z^2 + 17784371404800 z^3 + 201431030169600 z^4 - 164621765836800 z^5 + 19446638837760 z^6 - 581431197696 z^7 + 4294967296 z^8) BesselI[3/4, Sqrt[z]]^2) Gamma[3/4]^2)/(6637269653913600 Sqrt[2] z^(17/4))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["15", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["23", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["19", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["23283371986875", "+", RowBox[List["10370908548000", " ", "z"]], "-", RowBox[List["2911132224000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1976041267200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["237095623065600", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["169299777945600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19590587351040", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["582504939520", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["69850115960625", "+", RowBox[List["137550997584000", " ", "z"]], "-", RowBox[List["36521476992000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["13549997260800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["158083301376000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["157984122470400", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19233735966720", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["579820584960", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69850115960625"]], "+", RowBox[List["11462583132000", " ", "z"]], "-", RowBox[List["10638865036800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17784371404800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["201431030169600", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["164621765836800", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19446638837760", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["581431197696", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], ")"]], "/", RowBox[List["(", RowBox[List["6637269653913600", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 15 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;15&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;23&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 19 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4294967296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 582504939520 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19590587351040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 169299777945600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 237095623065600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1976041267200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2911132224000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10370908548000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 23283371986875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4294967296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 579820584960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19233735966720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 157984122470400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 158083301376000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13549997260800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 36521476992000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 137550997584000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 69850115960625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4294967296 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 581431197696 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19446638837760 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 164621765836800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 201431030169600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17784371404800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10638865036800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11462583132000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 69850115960625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 6637269653913600 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 15 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 19 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 582504939520 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19590587351040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 169299777945600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 237095623065600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1976041267200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2911132224000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10370908548000 </cn> <ci> z </ci> </apply> <cn type='integer'> 23283371986875 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 579820584960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19233735966720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 157984122470400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 158083301376000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13549997260800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36521476992000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 137550997584000 </cn> <ci> z </ci> </apply> <cn type='integer'> 69850115960625 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4294967296 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 581431197696 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 19446638837760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 164621765836800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 201431030169600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17784371404800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10638865036800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11462583132000 </cn> <ci> z </ci> </apply> <cn type='integer'> -69850115960625 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 6637269653913600 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["15", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox["23", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["19", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["23283371986875", "+", RowBox[List["10370908548000", " ", "z"]], "-", RowBox[List["2911132224000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1976041267200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["237095623065600", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["169299777945600", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19590587351040", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["582504939520", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["69850115960625", "+", RowBox[List["137550997584000", " ", "z"]], "-", RowBox[List["36521476992000", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["13549997260800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["158083301376000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["157984122470400", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19233735966720", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["579820584960", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "69850115960625"]], "+", RowBox[List["11462583132000", " ", "z"]], "-", RowBox[List["10638865036800", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17784371404800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["201431030169600", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["164621765836800", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19446638837760", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["581431197696", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4294967296", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], RowBox[List["6637269653913600", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02