Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=-13/4, b1`>=-11/2 > For fixed z and a1=-13/4, b1`=11/2





http://functions.wolfram.com/07.22.03.a8sh.01









  


  










Input Form





HypergeometricPFQ[{-(13/4)}, {11/2, 15/4}, -z] == (1/(7670731898880 z^(9/2))) (7 (Sqrt[Pi] z^(7/4) (741422907225 - 924371416800 z + 821663481600 z^2 + 922569523200 z^3 + 96268124160 z^4 + 2535456768 z^5 + 16777216 z^6) FresnelS[(2 z^(1/4))/Sqrt[Pi]] + 2 (4 Sqrt[z] (16982784000 + 38817792000 z - 54775190925 z^2 + 42640687440 z^3 + 56594787840 z^4 + 5987475456 z^5 + 158269440 z^6 + 1048576 z^7) Cos[2 Sqrt[z]] + (-33965568000 - 32348160000 z - 21999828825 z^2 + 14830704720 z^3 + 52570252800 z^4 + 5872066560 z^5 + 157483008 z^6 + 1048576 z^7) Sin[2 Sqrt[z]])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["13", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["15", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["7670731898880", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]], RowBox[List["(", RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["7", "/", "4"]]], " ", RowBox[List["(", RowBox[List["741422907225", "-", RowBox[List["924371416800", " ", "z"]], "+", RowBox[List["821663481600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["922569523200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["96268124160", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2535456768", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["16982784000", "+", RowBox[List["38817792000", " ", "z"]], "-", RowBox[List["54775190925", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["42640687440", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["56594787840", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5987475456", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["158269440", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "33965568000"]], "-", RowBox[List["32348160000", " ", "z"]], "-", RowBox[List["21999828825", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["14830704720", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["52570252800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5872066560", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["157483008", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 13 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 15 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;13&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;15&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 7670731898880 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2535456768 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 96268124160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 922569523200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 821663481600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 924371416800 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 741422907225 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1048576 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 158269440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5987475456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 56594787840 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 42640687440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 54775190925 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 38817792000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 16982784000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1048576 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 157483008 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5872066560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 52570252800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14830704720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 21999828825 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 32348160000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 33965568000 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 13 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 15 <sep /> 4 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 7670731898880 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2535456768 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 96268124160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 922569523200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 821663481600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 924371416800 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 741422907225 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1048576 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 158269440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5987475456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 56594787840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 42640687440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 54775190925 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 38817792000 </cn> <ci> z </ci> </apply> <cn type='integer'> 16982784000 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1048576 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 157483008 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5872066560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 52570252800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14830704720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21999828825 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 32348160000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -33965568000 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["13", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["15", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List["7", "/", "4"]]], " ", RowBox[List["(", RowBox[List["741422907225", "-", RowBox[List["924371416800", " ", "z"]], "+", RowBox[List["821663481600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["922569523200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["96268124160", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2535456768", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SqrtBox["\[Pi]"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["16982784000", "+", RowBox[List["38817792000", " ", "z"]], "-", RowBox[List["54775190925", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["42640687440", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["56594787840", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5987475456", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["158269440", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "33965568000"]], "-", RowBox[List["32348160000", " ", "z"]], "-", RowBox[List["21999828825", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["14830704720", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["52570252800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5872066560", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["157483008", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1048576", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["7670731898880", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02