Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=-9/4, b1`>=-11/2 > For fixed z and a1=-9/4, b1`=-9/2





http://functions.wolfram.com/07.22.03.a9bc.01









  


  










Input Form





HypergeometricPFQ[{-(9/4)}, {-(9/2), 23/4}, z] == (209 (4 z^(1/4) (-640591234408125 - 854121645877500 Sqrt[z] - 554024851380000 z - 218092322448000 z^(3/2) - 52739076499200 z^2 - 7101130982400 z^(5/2) - 384723763200 z^3 + 131604480000 z^(7/2) - 14553907200 z^4 + 55419076608 z^(9/2) - 874512384 z^5 + 3447717888 z^(11/2) - 16777216 z^6 + 67108864 z^(13/2) + E^(4 Sqrt[z]) (640591234408125 - 854121645877500 Sqrt[z] + 554024851380000 z - 218092322448000 z^(3/2) + 52739076499200 z^2 - 7101130982400 z^(5/2) + 384723763200 z^3 + 131604480000 z^(7/2) + 14553907200 z^4 + 55419076608 z^(9/2) + 874512384 z^5 + 3447717888 z^(11/2) + 16777216 z^6 + 67108864 z^(13/2))) + E^(2 Sqrt[z]) Sqrt[2 Pi] (640591234408125 - 129272465322000 z + 17093879712000 z^2 - 2245501440000 z^3 + 479040307200 z^4 + 218989854720 z^5 + 13740539904 z^6 + 268435456 z^7) Erf[Sqrt[2] z^(1/4)] - E^(2 Sqrt[z]) Sqrt[2 Pi] (640591234408125 - 129272465322000 z + 17093879712000 z^2 - 2245501440000 z^3 + 479040307200 z^4 + 218989854720 z^5 + 13740539904 z^6 + 268435456 z^7) Erfi[Sqrt[2] z^(1/4)]))/E^(2 Sqrt[z])/ (369435906932736 z^(19/4))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["9", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", FractionBox["23", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["209", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "640591234408125"]], "-", RowBox[List["854121645877500", " ", SqrtBox["z"]]], "-", RowBox[List["554024851380000", " ", "z"]], "-", RowBox[List["218092322448000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["52739076499200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7101130982400", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["384723763200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["131604480000", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["14553907200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["55419076608", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["874512384", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3447717888", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List["640591234408125", "-", RowBox[List["854121645877500", " ", SqrtBox["z"]]], "+", RowBox[List["554024851380000", " ", "z"]], "-", RowBox[List["218092322448000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["52739076499200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7101130982400", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["384723763200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["131604480000", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["14553907200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["55419076608", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["874512384", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3447717888", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["640591234408125", "-", RowBox[List["129272465322000", " ", "z"]], "+", RowBox[List["17093879712000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2245501440000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["479040307200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["218989854720", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13740539904", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["640591234408125", "-", RowBox[List["129272465322000", " ", "z"]], "+", RowBox[List["17093879712000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2245501440000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["479040307200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["218989854720", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13740539904", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["369435906932736", " ", SuperscriptBox["z", RowBox[List["19", "/", "4"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;23&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 369435906932736 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 209 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 67108864 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3447717888 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 874512384 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 55419076608 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14553907200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 131604480000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 384723763200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7101130982400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 52739076499200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 218092322448000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 554024851380000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 854121645877500 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 67108864 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3447717888 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 874512384 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 55419076608 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14553907200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 131604480000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 384723763200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7101130982400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 52739076499200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 218092322448000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 554024851380000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 854121645877500 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 640591234408125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 640591234408125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 268435456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13740539904 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 218989854720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 479040307200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2245501440000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17093879712000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 129272465322000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 640591234408125 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 268435456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13740539904 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 218989854720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 479040307200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2245501440000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17093879712000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 129272465322000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 640591234408125 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 4 </cn> </apply> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <cn type='rational'> 23 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 369435906932736 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 209 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 67108864 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3447717888 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 874512384 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 55419076608 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14553907200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 131604480000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 384723763200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7101130982400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 52739076499200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 218092322448000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 554024851380000 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 854121645877500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 67108864 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3447717888 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 874512384 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 55419076608 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14553907200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 131604480000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 384723763200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7101130982400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 52739076499200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 218092322448000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 554024851380000 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 854121645877500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 640591234408125 </cn> </apply> </apply> <cn type='integer'> -640591234408125 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13740539904 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 218989854720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 479040307200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2245501440000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17093879712000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 129272465322000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 640591234408125 </cn> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 268435456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13740539904 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 218989854720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 479040307200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2245501440000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17093879712000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 129272465322000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 640591234408125 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["9", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", FractionBox["23", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["209", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "640591234408125"]], "-", RowBox[List["854121645877500", " ", SqrtBox["z"]]], "-", RowBox[List["554024851380000", " ", "z"]], "-", RowBox[List["218092322448000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["52739076499200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7101130982400", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["384723763200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["131604480000", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["14553907200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["55419076608", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["874512384", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3447717888", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List["640591234408125", "-", RowBox[List["854121645877500", " ", SqrtBox["z"]]], "+", RowBox[List["554024851380000", " ", "z"]], "-", RowBox[List["218092322448000", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["52739076499200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7101130982400", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["384723763200", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["131604480000", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["14553907200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["55419076608", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["874512384", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3447717888", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["640591234408125", "-", RowBox[List["129272465322000", " ", "z"]], "+", RowBox[List["17093879712000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2245501440000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["479040307200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["218989854720", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13740539904", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erf", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", SqrtBox["z"]]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["640591234408125", "-", RowBox[List["129272465322000", " ", "z"]], "+", RowBox[List["17093879712000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2245501440000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["479040307200", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["218989854720", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["13740539904", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268435456", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], "]"]]]]]], ")"]]]], RowBox[List["369435906932736", " ", SuperscriptBox["z", RowBox[List["19", "/", "4"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02