Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=-9/4, b1`>=-11/2 > For fixed z and a1=-9/4, b1`=11/2





http://functions.wolfram.com/07.22.03.a9om.01









  


  










Input Form





HypergeometricPFQ[{-(9/4)}, {11/2, 21/4}, z] == -((17 (2 Sqrt[z] (-215251811775 - 257681904480 z - 114329698560 z^2 - 79256567808 z^3 + 33817559040 z^4 - 1667235840 z^5 + 16777216 z^6) BesselI[1/4, Sqrt[z]]^2 + 3 (358753019625 + 348713164800 z + 143463640320 z^2 + 52018053120 z^3 - 32383500288 z^4 + 1652555776 z^5 - 16777216 z^6) BesselI[1/4, Sqrt[z]] BesselI[5/4, Sqrt[z]] + 2 Sqrt[z] (422421874875 + 353188836000 z + 145104410880 z^2 + 55484006400 z^3 - 32583647232 z^4 + 1654652928 z^5 - 16777216 z^6) BesselI[5/4, Sqrt[z]]^2) Gamma[5/4]^2)/ (654950596608 Sqrt[2] z^(15/4)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["9", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["21", "4"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List["17", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "215251811775"]], "-", RowBox[List["257681904480", " ", "z"]], "-", RowBox[List["114329698560", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["79256567808", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["33817559040", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1667235840", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["358753019625", "+", RowBox[List["348713164800", " ", "z"]], "+", RowBox[List["143463640320", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["52018053120", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["32383500288", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1652555776", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["422421874875", "+", RowBox[List["353188836000", " ", "z"]], "+", RowBox[List["145104410880", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["55484006400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["32583647232", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1654652928", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], ")"]], "/", RowBox[List["(", RowBox[List["654950596608", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["15", "/", "4"]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;21&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 17 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1667235840 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 33817559040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 79256567808 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 114329698560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 257681904480 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 215251811775 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 16777216 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1652555776 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 32383500288 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 52018053120 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 143463640320 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 348713164800 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 358753019625 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 16777216 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1654652928 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 32583647232 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 55484006400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 145104410880 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 353188836000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 422421874875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 654950596608 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 17 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1667235840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 33817559040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 79256567808 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 114329698560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 257681904480 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -215251811775 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1652555776 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 32383500288 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 52018053120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 143463640320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 348713164800 </cn> <ci> z </ci> </apply> <cn type='integer'> 358753019625 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselI </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1654652928 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 32583647232 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 55484006400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 145104410880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 353188836000 </cn> <ci> z </ci> </apply> <cn type='integer'> 422421874875 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 654950596608 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["9", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["21", "4"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["17", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "215251811775"]], "-", RowBox[List["257681904480", " ", "z"]], "-", RowBox[List["114329698560", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["79256567808", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["33817559040", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1667235840", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["358753019625", "+", RowBox[List["348713164800", " ", "z"]], "+", RowBox[List["143463640320", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["52018053120", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["32383500288", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1652555776", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["422421874875", "+", RowBox[List["353188836000", " ", "z"]], "+", RowBox[List["145104410880", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["55484006400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["32583647232", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1654652928", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["16777216", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], RowBox[List["654950596608", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["15", "/", "4"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02