| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.22.03.a9ot.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{-(7/4)}, {-(11/2), -(21/4)}, -z] == 
 (1/(103378275 Sqrt[2])) 
  (z^(1/4) ((103378275 - 200491200 z + 111646080 z^2 - 14169600 z^3 + 
      664064 z^4 - 8192 z^5) BesselJ[-(1/4), Sqrt[z]]^2 + 
    4 Sqrt[z] (103378275 - 117788580 z + 24766560 z^2 - 1827648 z^3 + 
      48128 z^4) BesselJ[-(1/4), Sqrt[z]] BesselJ[3/4, Sqrt[z]] + 
    4 z (103378275 - 35085960 z + 4049136 z^2 - 178560 z^3 + 2048 z^4) 
     BesselJ[3/4, Sqrt[z]]^2) Gamma[3/4]^2) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["7", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["21", "4"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["103378275", " ", SqrtBox["2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["103378275", "-", RowBox[List["200491200", " ", "z"]], "+", RowBox[List["111646080", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["14169600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["664064", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["8192", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["103378275", "-", RowBox[List["117788580", " ", "z"]], "+", RowBox[List["24766560", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1827648", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["48128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["103378275", "-", RowBox[List["35085960", " ", "z"]], "+", RowBox[List["4049136", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["178560", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 11 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 21 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["7", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["21", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 103378275 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 8192 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 664064 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 14169600 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 111646080 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 200491200 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 103378275 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msub>  <mi> J </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 48128 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1827648 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 24766560 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 117788580 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 103378275 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2048 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 178560 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4049136 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 35085960 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 103378275 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msub>  <mi> J </mi>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 4 </cn>  </apply>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 21 <sep /> 4 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 103378275 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -8192 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 664064 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 14169600 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 111646080 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 200491200 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 103378275 </cn>  </apply>  <apply>  <power />  <apply>  <ci> BesselJ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 48128 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1827648 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 24766560 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 117788580 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 103378275 </cn>  </apply>  <apply>  <ci> BesselJ </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> BesselJ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2048 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 178560 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4049136 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 35085960 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 103378275 </cn>  </apply>  <apply>  <power />  <apply>  <ci> BesselJ </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["-", FractionBox["7", "4"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["21", "4"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["103378275", "-", RowBox[List["200491200", " ", "z"]], "+", RowBox[List["111646080", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["14169600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["664064", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["8192", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["103378275", "-", RowBox[List["117788580", " ", "z"]], "+", RowBox[List["24766560", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1827648", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["48128", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["103378275", "-", RowBox[List["35085960", " ", "z"]], "+", RowBox[List["4049136", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["178560", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], RowBox[List["103378275", " ", SqrtBox["2"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |