|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.03.acu1.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{7/4}, {-(9/2), -(23/4)}, -z] ==
(1/(4292771175 z^(1/4)))
(Sqrt[2] ((4292771175 + 8295210000 z + 2305195200 z^2 - 1511516160 z^3 +
288529920 z^4 - 34578432 z^5 - 1966080 z^6 + 2097152 z^7)
BesselJ[1/4, Sqrt[z]]^2 + 12 Sqrt[z] (-1430923725 - 857171700 z +
737906400 z^2 - 174242880 z^3 + 23331840 z^4 - 2277376 z^5 +
1835008 z^6) BesselJ[1/4, Sqrt[z]] BesselJ[5/4, Sqrt[z]] -
4 z (-4292771175 + 3152179800 z - 898959600 z^2 + 139628160 z^3 -
16496640 z^4 + 3244032 z^5 + 524288 z^6) BesselJ[5/4, Sqrt[z]]^2)
Gamma[5/4]^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["7", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["23", "4"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4292771175", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], RowBox[List["(", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4292771175", "+", RowBox[List["8295210000", " ", "z"]], "+", RowBox[List["2305195200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1511516160", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["288529920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["34578432", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1966080", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2097152", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["12", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1430923725"]], "-", RowBox[List["857171700", " ", "z"]], "+", RowBox[List["737906400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["174242880", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["23331840", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["2277376", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4292771175"]], "+", RowBox[List["3152179800", " ", "z"]], "-", RowBox[List["898959600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["139628160", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["16496640", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3244032", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[FractionBox["7", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["23", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4292771175 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2097152 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1966080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 34578432 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 288529920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1511516160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2305195200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8295210000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4292771175 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1835008 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2277376 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 23331840 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 174242880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 737906400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 857171700 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1430923725 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 524288 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3244032 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16496640 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 139628160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 898959600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3152179800 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 4292771175 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 7 <sep /> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4292771175 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2097152 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1966080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 34578432 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 288529920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1511516160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2305195200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8295210000 </cn> <ci> z </ci> </apply> <cn type='integer'> 4292771175 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1835008 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2277376 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 23331840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 174242880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 737906400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 857171700 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1430923725 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselJ </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3244032 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16496640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 139628160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 898959600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3152179800 </cn> <ci> z </ci> </apply> <cn type='integer'> -4292771175 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["7", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["23", "4"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4292771175", "+", RowBox[List["8295210000", " ", "z"]], "+", RowBox[List["2305195200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1511516160", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["288529920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["34578432", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1966080", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2097152", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["12", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1430923725"]], "-", RowBox[List["857171700", " ", "z"]], "+", RowBox[List["737906400", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["174242880", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["23331840", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["2277376", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4292771175"]], "+", RowBox[List["3152179800", " ", "z"]], "-", RowBox[List["898959600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["139628160", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["16496640", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3244032", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], RowBox[List["4292771175", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|