Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=11/4, b1`>=-11/2 > For fixed z and a1=11/4, b1`=-11/2





http://functions.wolfram.com/07.22.03.adoo.01









  


  










Input Form





HypergeometricPFQ[{11/4}, {-(11/2), -(23/4)}, z] == (1/(330543380475 z^(1/4))) (Sqrt[2] ((330543380475 - 632343858300 z + 165397755600 z^2 + 119357884800 z^3 + 24570120960 z^4 + 3145089024 z^5 + 423886848 z^6 + 968884224 z^7 + 16777216 z^8) BesselI[1/4, Sqrt[z]]^2 + 4 Sqrt[z] (330543380475 - 191619351000 z - 174042237600 z^2 - 43682284800 z^3 - 6308628480 z^4 - 715309056 z^5 + 121634816 z^7) BesselI[1/4, Sqrt[z]] BesselI[5/4, Sqrt[z]] + 4 z (330543380475 + 249105156300 z + 74150445600 z^2 + 12271089600 z^3 + 1518612480 z^4 + 211943424 z^5 + 154140672 z^6 + 4194304 z^7) BesselI[5/4, Sqrt[z]]^2) Gamma[5/4]^2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["23", "4"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["330543380475", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], RowBox[List["(", RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["330543380475", "-", RowBox[List["632343858300", " ", "z"]], "+", RowBox[List["165397755600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["119357884800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["24570120960", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3145089024", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["423886848", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["968884224", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["330543380475", "-", RowBox[List["191619351000", " ", "z"]], "-", RowBox[List["174042237600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["43682284800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6308628480", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["715309056", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["121634816", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["330543380475", "+", RowBox[List["249105156300", " ", "z"]], "+", RowBox[List["74150445600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["12271089600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1518612480", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["211943424", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["154140672", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4194304", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;11&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;23&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 330543380475 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 968884224 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 423886848 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3145089024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24570120960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 119357884800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 165397755600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 632343858300 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 330543380475 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 121634816 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 715309056 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6308628480 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 43682284800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 174042237600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 191619351000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 330543380475 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4194304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 154140672 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 211943424 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1518612480 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12271089600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 74150445600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 249105156300 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 330543380475 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> I </mi> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 330543380475 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 968884224 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 423886848 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3145089024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24570120960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 119357884800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 165397755600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 632343858300 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 330543380475 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 121634816 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 715309056 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6308628480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 43682284800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 174042237600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 191619351000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 330543380475 </cn> </apply> <apply> <ci> BesselI </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselI </ci> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4194304 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 154140672 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 211943424 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1518612480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12271089600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 74150445600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 249105156300 </cn> <ci> z </ci> </apply> <cn type='integer'> 330543380475 </cn> </apply> <apply> <power /> <apply> <ci> BesselI </ci> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 5 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["11", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["23", "4"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["330543380475", "-", RowBox[List["632343858300", " ", "z"]], "+", RowBox[List["165397755600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["119357884800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["24570120960", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3145089024", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["423886848", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["968884224", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["330543380475", "-", RowBox[List["191619351000", " ", "z"]], "-", RowBox[List["174042237600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["43682284800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["6308628480", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["715309056", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["121634816", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["330543380475", "+", RowBox[List["249105156300", " ", "z"]], "+", RowBox[List["74150445600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["12271089600", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1518612480", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["211943424", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["154140672", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["4194304", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], RowBox[List["330543380475", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02