  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.22.03.aeyk.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQ[{15/4}, {9/2, -(3/4)}, z] == 
 -((1/(264 Sqrt[2] z^(9/4))) 
   (5 (4 z (5967 + 1440 z + 256 z^2) BesselI[1/4, Sqrt[z]]^2 - 
     12 Sqrt[z] (9945 + 3328 z + 512 z^2) BesselI[1/4, Sqrt[z]] 
      BesselI[5/4, Sqrt[z]] + (149175 + 63180 z + 11136 z^2 + 1024 z^3) 
      BesselI[5/4, Sqrt[z]]^2) Gamma[5/4]^2)) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["15", "4"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["3", "4"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["264", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "4"]]]]]], RowBox[List["(", RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["5967", "+", RowBox[List["1440", " ", "z"]], "+", RowBox[List["256", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List["12", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["9945", "+", RowBox[List["3328", " ", "z"]], "+", RowBox[List["512", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["149175", "+", RowBox[List["63180", " ", "z"]], "+", RowBox[List["11136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], ")"]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 15 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 9 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[FractionBox["15", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["9", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["3", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 264 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 9 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1440 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5967 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msub>  <mi> I </mi>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 512 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3328 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 9945 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mfrac>  <mn> 5 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1024 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 11136 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 63180 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 149175 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msub>  <mi> I </mi>  <mfrac>  <mn> 5 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 5 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 15 <sep /> 4 </cn>  </list>  <list>  <cn type='rational'> 9 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 264 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 9 <sep /> 4 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 5 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1440 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5967 </cn>  </apply>  <apply>  <power />  <apply>  <ci> BesselI </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 512 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3328 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 9945 </cn>  </apply>  <apply>  <ci> BesselI </ci>  <cn type='rational'> 5 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> BesselI </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1024 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 11136 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 63180 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 149175 </cn>  </apply>  <apply>  <power />  <apply>  <ci> BesselI </ci>  <cn type='rational'> 5 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <cn type='rational'> 5 <sep /> 4 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["15", "4"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", RowBox[List["-", FractionBox["3", "4"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["5967", "+", RowBox[List["1440", " ", "z"]], "+", RowBox[List["256", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]], "-", RowBox[List["12", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["9945", "+", RowBox[List["3328", " ", "z"]], "+", RowBox[List["512", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["1", "4"], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["149175", "+", RowBox[List["63180", " ", "z"]], "+", RowBox[List["11136", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselI", "[", RowBox[List[FractionBox["5", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["5", "4"], "]"]], "2"]]], RowBox[List["264", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["9", "/", "4"]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |