| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.22.03.af9f.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{17/4}, {1/2, 3/4}, -z] == 
 (1/(585 Sqrt[2])) (z^(1/4) ((585 - 3320 z + 128 z^2) 
     BesselJ[-(1/4), Sqrt[z]]^2 + 4 Sqrt[z] (-1095 + 592 z) 
     BesselJ[-(1/4), Sqrt[z]] BesselJ[3/4, Sqrt[z]] + 
    8 (345 - 16 z) z BesselJ[3/4, Sqrt[z]]^2) Gamma[3/4]^2) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["17", "4"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["585", " ", SqrtBox["2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["585", "-", RowBox[List["3320", " ", "z"]], "+", RowBox[List["128", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1095"]], "+", RowBox[List["592", " ", "z"]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["345", "-", RowBox[List["16", " ", "z"]]]], ")"]], " ", "z", " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 1 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 17 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "1"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[FractionBox["17", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["3", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 585 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 128 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3320 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 585 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <msub>  <mi> J </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 592 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 1095 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 345 </mn>  <mo> - </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <msub>  <mi> J </mi>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </msub>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 17 <sep /> 4 </cn>  </list>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 585 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 128 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3320 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 585 </cn>  </apply>  <apply>  <power />  <apply>  <ci> BesselJ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 592 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1095 </cn>  </apply>  <apply>  <ci> BesselJ </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <ci> BesselJ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <plus />  <cn type='integer'> 345 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 16 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  <apply>  <power />  <apply>  <ci> BesselJ </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["17", "4"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "4"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["585", "-", RowBox[List["3320", " ", "z"]], "+", RowBox[List["128", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1095"]], "+", RowBox[List["592", " ", "z"]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List["345", "-", RowBox[List["16", " ", "z"]]]], ")"]], " ", "z", " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], RowBox[List["585", " ", SqrtBox["2"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |