Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=19/4, b1`>=-11/2 > For fixed z and a1=19/4, b1`=-11/2





http://functions.wolfram.com/07.22.03.afh3.01









  


  










Input Form





HypergeometricPFQ[{19/4}, {-(11/2), -(9/4)}, -z] == (1 - (236 z)/99 + (7264 z^2)/4455 - (704 z^3)/567 + (44032 z^4)/66825 + (475136 z^5)/1403325 - (262144 z^6)/15436575) Cos[2 Sqrt[z]] + (1/1620840375) (2 Sqrt[z] (1620840375 - 1702701000 z + 948855600 z^2 - 1133193600 z^3 - 248371200 z^4 - 113541120 z^5 + 524288 z^6) Sin[2 Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["19", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "4"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["236", " ", "z"]], "99"], "+", FractionBox[RowBox[List["7264", " ", SuperscriptBox["z", "2"]]], "4455"], "-", FractionBox[RowBox[List["704", " ", SuperscriptBox["z", "3"]]], "567"], "+", FractionBox[RowBox[List["44032", " ", SuperscriptBox["z", "4"]]], "66825"], "+", FractionBox[RowBox[List["475136", " ", SuperscriptBox["z", "5"]]], "1403325"], "-", FractionBox[RowBox[List["262144", " ", SuperscriptBox["z", "6"]]], "15436575"]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[FractionBox["1", "1620840375"], RowBox[List["(", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1620840375", "-", RowBox[List["1702701000", " ", "z"]], "+", RowBox[List["948855600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1133193600", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["248371200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["113541120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;19&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mn> 15436575 </mn> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 475136 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mn> 1403325 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 44032 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 66825 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 704 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 567 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 7264 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 4455 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 236 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 99 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 1620840375 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 524288 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 113541120 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 248371200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1133193600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 948855600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1702701000 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1620840375 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 19 <sep /> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 4 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <cn type='integer'> 15436575 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 475136 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <cn type='integer'> 1403325 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 44032 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 66825 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 704 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 567 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7264 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4455 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 236 </cn> <ci> z </ci> <apply> <power /> <cn type='integer'> 99 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 1620840375 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 113541120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 248371200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1133193600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 948855600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1702701000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1620840375 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["19", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "4"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["236", " ", "z"]], "99"], "+", FractionBox[RowBox[List["7264", " ", SuperscriptBox["z", "2"]]], "4455"], "-", FractionBox[RowBox[List["704", " ", SuperscriptBox["z", "3"]]], "567"], "+", FractionBox[RowBox[List["44032", " ", SuperscriptBox["z", "4"]]], "66825"], "+", FractionBox[RowBox[List["475136", " ", SuperscriptBox["z", "5"]]], "1403325"], "-", FractionBox[RowBox[List["262144", " ", SuperscriptBox["z", "6"]]], "15436575"]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", FractionBox[RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1620840375", "-", RowBox[List["1702701000", " ", "z"]], "+", RowBox[List["948855600", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1133193600", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["248371200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["113541120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["524288", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "1620840375"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02