Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1},{b1,b2},z] > Specific values > For rational parameters with larger denominators and fixed z > For fixed z and a1=21/4, b1`>=-11/2 > For fixed z and a1=21/4, b1`=-9/2





http://functions.wolfram.com/07.22.03.afy3.01









  


  










Input Form





HypergeometricPFQ[{21/4}, {-(9/2), -(21/4)}, -z] == -((1/(1962730531125 Sqrt[2])) (z^(1/4) ((-1962730531125 + 4361623402500 z - 3319232061600 z^2 + 1140995419200 z^3 - 306029767680 z^4 + 143712092160 z^5 + 547474636800 z^6 - 36419141632 z^7 + 67108864 z^8) BesselJ[-(1/4), Sqrt[z]]^2 + 28 Sqrt[z] (-280390075875 + 398776996800 z - 175093261200 z^2 + 48828199680 z^3 - 13931274240 z^4 + 11731599360 z^5 - 15297675264 z^6 + 184549376 z^7) BesselJ[-(1/4), Sqrt[z]] BesselJ[3/4, Sqrt[z]] - 4 z (1962730531125 - 1221254552700 z + 388221135120 z^2 - 100887171840 z^3 + 35928023040 z^4 + 112178626560 z^5 - 8786018304 z^6 + 16777216 z^7) BesselJ[3/4, Sqrt[z]]^2) Gamma[3/4]^2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["21", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["21", "4"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["1962730531125", " ", SqrtBox["2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1962730531125"]], "+", RowBox[List["4361623402500", " ", "z"]], "-", RowBox[List["3319232061600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1140995419200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["306029767680", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["143712092160", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["547474636800", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["36419141632", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["28", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "280390075875"]], "+", RowBox[List["398776996800", " ", "z"]], "-", RowBox[List["175093261200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["48828199680", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["13931274240", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["11731599360", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["15297675264", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["184549376", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["1962730531125", "-", RowBox[List["1221254552700", " ", "z"]], "+", RowBox[List["388221135120", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["100887171840", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["35928023040", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["112178626560", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["8786018304", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;21&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;21&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1962730531125 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 67108864 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 36419141632 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 547474636800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 143712092160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 306029767680 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1140995419200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3319232061600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4361623402500 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1962730531125 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> J </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 184549376 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 15297675264 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11731599360 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13931274240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 48828199680 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 175093261200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 398776996800 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 280390075875 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> J </mi> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16777216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8786018304 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 112178626560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35928023040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 100887171840 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 388221135120 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1221254552700 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1962730531125 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> J </mi> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 21 <sep /> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1962730531125 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 67108864 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36419141632 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 547474636800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 143712092160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 306029767680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1140995419200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3319232061600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4361623402500 </cn> <ci> z </ci> </apply> <cn type='integer'> -1962730531125 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 184549376 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15297675264 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11731599360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13931274240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 48828199680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 175093261200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 398776996800 </cn> <ci> z </ci> </apply> <cn type='integer'> -280390075875 </cn> </apply> <apply> <ci> BesselJ </ci> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16777216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8786018304 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 112178626560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 35928023040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 100887171840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 388221135120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1221254552700 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1962730531125 </cn> </apply> <apply> <power /> <apply> <ci> BesselJ </ci> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["21", "4"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["21", "4"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1962730531125"]], "+", RowBox[List["4361623402500", " ", "z"]], "-", RowBox[List["3319232061600", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1140995419200", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["306029767680", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["143712092160", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["547474636800", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["36419141632", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["67108864", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], "2"]]], "+", RowBox[List["28", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "280390075875"]], "+", RowBox[List["398776996800", " ", "z"]], "-", RowBox[List["175093261200", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["48828199680", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["13931274240", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["11731599360", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["15297675264", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["184549376", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]]]], "-", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["1962730531125", "-", RowBox[List["1221254552700", " ", "z"]], "+", RowBox[List["388221135120", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["100887171840", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["35928023040", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["112178626560", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["8786018304", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["16777216", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["BesselJ", "[", RowBox[List[FractionBox["3", "4"], ",", SqrtBox["z"]]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], RowBox[List["1962730531125", " ", SqrtBox["2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02