|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.06.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1]}, {Subscript[b, 1], Subscript[b, 2]},
z] \[Proportional]
(((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/
(Gamma[-Subscript[a, 1] + Subscript[b, 1]]
Gamma[-Subscript[a, 1] + Subscript[b, 2]]))
(1 + (Subscript[a, 1] (1 + Subscript[a, 1] - Subscript[b, 1])
(1 + Subscript[a, 1] - Subscript[b, 2]))/z +
(1/(2 z^2)) (Subscript[a, 1] (1 + Subscript[a, 1])
(1 + Subscript[a, 1] - Subscript[b, 1]) (2 + Subscript[a, 1] -
Subscript[b, 1]) (1 + Subscript[a, 1] - Subscript[b, 2])
(2 + Subscript[a, 1] - Subscript[b, 2])) + \[Ellipsis]))/
(-z)^Subscript[a, 1] + ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/
(2 Sqrt[Pi] Gamma[Subscript[a, 1]]))
(-z)^((1/2) (1/2 + Subscript[a, 1] - Subscript[b, 1] - Subscript[b, 2]))
(E^(I (2 Sqrt[-z] + (1/2) Pi (1/2 + Subscript[a, 1] - Subscript[b, 1] -
Subscript[b, 2]))) (1 - Subscript[d, 1]/Sqrt[-z] +
Subscript[d, 2]/z + \[Ellipsis]) +
(1 + Subscript[d, 1]/Sqrt[-z] + Subscript[d, 2]/z + \[Ellipsis])/
E^(I (2 Sqrt[-z] + (1/2) Pi (1/2 + Subscript[a, 1] - Subscript[b, 1] -
Subscript[b, 2])))) /; (Abs[z] -> Infinity) &&
Subscript[d, 1] == (1/16) (I (-3 + 12 Subscript[a, 1]^2 -
4 Subscript[b, 1]^2 + 8 Subscript[b, 2] - 4 Subscript[b, 2]^2 +
8 Subscript[b, 1] (1 + Subscript[b, 2]) - 8 Subscript[a, 1]
(1 + Subscript[b, 1] + Subscript[b, 2]))) &&
Subscript[d, 2] == (1/512) (-15 + 144 Subscript[a, 1]^4 +
16 Subscript[b, 1]^4 + 16 Subscript[b, 2] + 56 Subscript[b, 2]^2 -
64 Subscript[b, 2]^3 + 16 Subscript[b, 2]^4 - 64 Subscript[b, 1]^3
(1 + Subscript[b, 2]) - 64 Subscript[a, 1]^3 (7 + 3 Subscript[b, 1] +
3 Subscript[b, 2]) + 8 Subscript[b, 1]^2 (7 + 8 Subscript[b, 2] +
12 Subscript[b, 2]^2) + 16 Subscript[b, 1] (1 + 25 Subscript[b, 2] +
4 Subscript[b, 2]^2 - 4 Subscript[b, 2]^3) -
8 Subscript[a, 1]^2 (-43 + 4 Subscript[b, 1]^2 - 72 Subscript[b, 2] +
4 Subscript[b, 2]^2 - 8 Subscript[b, 1] (9 + 5 Subscript[b, 2])) +
16 Subscript[a, 1] (-1 + 4 Subscript[b, 1]^3 - 25 Subscript[b, 2] -
4 Subscript[b, 2]^2 + 4 Subscript[b, 2]^3 - 4 Subscript[b, 1]^2
(1 + Subscript[b, 2]) - Subscript[b, 1] (25 + 40 Subscript[b, 2] +
4 Subscript[b, 2]^2)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", SubscriptBox["a", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["b", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["b", "2"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "1"]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]], "z"], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SubscriptBox["d", "1"], SqrtBox[RowBox[List["-", "z"]]]], "+", FractionBox[SubscriptBox["d", "2"], "z"], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SubscriptBox["d", "1"], SqrtBox[RowBox[List["-", "z"]]]], "+", FractionBox[SubscriptBox["d", "2"], "z"], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", RowBox[List[FractionBox["1", "16"], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["12", " ", SubsuperscriptBox["a", "1", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "-", RowBox[List["8", " ", SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]], ")"]]]]]], ")"]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["d", "2"], "\[Equal]", RowBox[List[FractionBox["1", "512"], RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["144", " ", SubsuperscriptBox["a", "1", "4"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["b", "1", "4"]]], "+", RowBox[List["16", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["56", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "2", "3"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["b", "2", "4"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "-", RowBox[List["64", " ", SubsuperscriptBox["a", "1", "3"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", SubscriptBox["b", "1"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["8", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["25", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "3"]]]]], ")"]]]], "-", RowBox[List["8", " ", SubsuperscriptBox["a", "1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "43"]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "2"]]], "-", RowBox[List["72", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["8", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["5", " ", SubscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "3"]]], "-", RowBox[List["25", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "-", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["40", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> z </mi> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <msub> <mi> d </mi> <mn> 1 </mn> </msub> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> + </mo> <mfrac> <msub> <mi> d </mi> <mn> 2 </mn> </msub> <mi> z </mi> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msub> <mi> d </mi> <mn> 1 </mn> </msub> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> + </mo> <mfrac> <msub> <mi> d </mi> <mn> 2 </mn> </msub> <mi> z </mi> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> d </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 16 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> d </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 512 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 15 </mn> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 56 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 25 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 43 </mn> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 72 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 9 </mn> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 25 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 25 </mn> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 16 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> -3 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 512 </cn> <apply> <plus /> <cn type='integer'> -15 </cn> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 56 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> -43 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 25 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", SubscriptBox["a_", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["aa", "1"]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]], "z"], "+", FractionBox[RowBox[List[SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["z", "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["aa", "1"]]], "+", SubscriptBox["bb", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", SubscriptBox["aa", "1"]]], "+", SubscriptBox["bb", "2"]]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[SubscriptBox["d", "1"], SqrtBox[RowBox[List["-", "z"]]]], "+", FractionBox[SubscriptBox["d", "2"], "z"], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[SubscriptBox["d", "1"], SqrtBox[RowBox[List["-", "z"]]]], "+", FractionBox[SubscriptBox["d", "2"], "z"], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", RowBox[List[FractionBox["1", "16"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["12", " ", SubsuperscriptBox["aa", "1", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "-", RowBox[List["8", " ", SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"]]], ")"]]]]]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["d", "2"], "\[Equal]", RowBox[List[FractionBox["1", "512"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["144", " ", SubsuperscriptBox["aa", "1", "4"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["bb", "1", "4"]]], "+", RowBox[List["16", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["56", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "2", "3"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["bb", "2", "4"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "-", RowBox[List["64", " ", SubsuperscriptBox["aa", "1", "3"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", SubscriptBox["bb", "1"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["8", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["25", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "3"]]]]], ")"]]]], "-", RowBox[List["8", " ", SubsuperscriptBox["aa", "1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "43"]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "2"]]], "-", RowBox[List["72", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["8", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["5", " ", SubscriptBox["bb", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "3"]]], "-", RowBox[List["25", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "-", RowBox[List[SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["40", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|