|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.06.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1]}, {Subscript[b, 1], Subscript[b, 2]},
z] \[Proportional] ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/
(Sqrt[Pi] Gamma[Subscript[a, 1]]))
(-z)^((1/2) (1/2 + Subscript[a, 1] - Subscript[b, 1] - Subscript[b, 2]))
(Cos[2 Sqrt[-z] + (1/2) Pi (1/2 + Subscript[a, 1] - Subscript[b, 1] -
Subscript[b, 2])] (1 + (1/(512 z)) (-15 + 144 Subscript[a, 1]^4 +
16 Subscript[b, 1]^4 + 16 Subscript[b, 2] + 56 Subscript[b, 2]^2 -
64 Subscript[b, 2]^3 + 16 Subscript[b, 2]^4 - 64 Subscript[b, 1]^3
(1 + Subscript[b, 2]) - 64 Subscript[a, 1]^3
(7 + 3 Subscript[b, 1] + 3 Subscript[b, 2]) + 8 Subscript[b, 1]^2
(7 + 8 Subscript[b, 2] + 12 Subscript[b, 2]^2) +
16 Subscript[b, 1] (1 + 25 Subscript[b, 2] + 4 Subscript[b, 2]^2 -
4 Subscript[b, 2]^3) - 8 Subscript[a, 1]^2
(-43 + 4 Subscript[b, 1]^2 - 72 Subscript[b, 2] +
4 Subscript[b, 2]^2 - 8 Subscript[b, 1] (9 + 5 Subscript[b, 2])) +
16 Subscript[a, 1] (-1 + 4 Subscript[b, 1]^3 - 25 Subscript[b, 2] -
4 Subscript[b, 2]^2 + 4 Subscript[b, 2]^3 - 4 Subscript[b, 1]^2
(1 + Subscript[b, 2]) - Subscript[b, 1] (25 + 40 Subscript[b, 2] +
4 Subscript[b, 2]^2))) + \[Ellipsis]) +
(1/(8 Sqrt[-z])) Sin[2 Sqrt[-z] + (1/2) Pi (1/2 + Subscript[a, 1] -
Subscript[b, 1] - Subscript[b, 2])] (-3 + 12 Subscript[a, 1]^2 -
4 Subscript[b, 1]^2 + 8 Subscript[b, 2] - 4 Subscript[b, 2]^2 +
8 Subscript[b, 1] (1 + Subscript[b, 2]) - 8 Subscript[a, 1]
(1 + Subscript[b, 1] + Subscript[b, 2]) +
(1/(1536 z)) (-315 + 1728 Subscript[a, 1]^6 - 64 Subscript[b, 1]^6 +
216 Subscript[b, 2] + 1364 Subscript[b, 2]^2 -
960 Subscript[b, 2]^3 - 400 Subscript[b, 2]^4 +
384 Subscript[b, 2]^5 - 64 Subscript[b, 2]^6 + 384 Subscript[b, 1]^5
(1 + Subscript[b, 2]) - 1152 Subscript[a, 1]^5
(11 + 3 Subscript[b, 1] + 3 Subscript[b, 2]) -
16 Subscript[b, 1]^4 (25 + 72 Subscript[b, 2] +
60 Subscript[b, 2]^2) + 64 Subscript[b, 1]^3
(-15 - 71 Subscript[b, 2] + 12 Subscript[b, 2]^2 +
20 Subscript[b, 2]^3) + Subscript[b, 1]^2
(1364 + 13248 Subscript[b, 2] + 9888 Subscript[b, 2]^2 +
768 Subscript[b, 2]^3 - 960 Subscript[b, 2]^4) +
8 Subscript[b, 1] (27 + 2155 Subscript[b, 2] +
1656 Subscript[b, 2]^2 - 568 Subscript[b, 2]^3 -
144 Subscript[b, 2]^4 + 48 Subscript[b, 2]^5) +
48 Subscript[a, 1]^4 (693 + 12 Subscript[b, 1]^2 +
488 Subscript[b, 2] + 12 Subscript[b, 2]^2 + 8 Subscript[b, 1]
(61 + 21 Subscript[b, 2])) + 64 Subscript[a, 1]^3
(-585 + 28 Subscript[b, 1]^3 - 853 Subscript[b, 2] -
108 Subscript[b, 2]^2 + 28 Subscript[b, 2]^3 - 12 Subscript[b, 1]^2
(9 + 5 Subscript[b, 2]) - Subscript[b, 1]
(853 + 696 Subscript[b, 2] + 60 Subscript[b, 2]^2)) -
12 Subscript[a, 1]^2 (-1323 + 16 Subscript[b, 1]^4 -
4304 Subscript[b, 2] - 1432 Subscript[b, 2]^2 +
448 Subscript[b, 2]^3 + 16 Subscript[b, 2]^4 + 64 Subscript[b, 1]^3
(7 + 3 Subscript[b, 2]) - 8 Subscript[b, 1]^2
(179 + 184 Subscript[b, 2] + 52 Subscript[b, 2]^2) +
16 Subscript[b, 1] (-269 - 449 Subscript[b, 2] -
92 Subscript[b, 2]^2 + 12 Subscript[b, 2]^3)) -
8 Subscript[a, 1] (27 + 48 Subscript[b, 1]^5 + 2155 Subscript[b, 2] +
1656 Subscript[b, 2]^2 - 568 Subscript[b, 2]^3 -
144 Subscript[b, 2]^4 + 48 Subscript[b, 2]^5 -
144 Subscript[b, 1]^4 (1 + Subscript[b, 2]) + 8 Subscript[b, 1]^3
(-71 - 72 Subscript[b, 2] + 12 Subscript[b, 2]^2) +
24 Subscript[b, 1]^2 (69 + 141 Subscript[b, 2] +
60 Subscript[b, 2]^2 + 4 Subscript[b, 2]^3) +
Subscript[b, 1] (2155 + 8112 Subscript[b, 2] +
3384 Subscript[b, 2]^2 - 576 Subscript[b, 2]^3 -
144 Subscript[b, 2]^4))) + \[Ellipsis])) /; (Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", SubscriptBox["a", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox["1", RowBox[List["512", " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["144", " ", SubsuperscriptBox["a", "1", "4"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["b", "1", "4"]]], "+", RowBox[List["16", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["56", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "2", "3"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["b", "2", "4"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "-", RowBox[List["64", " ", SubsuperscriptBox["a", "1", "3"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", SubscriptBox["b", "1"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["8", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["25", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "3"]]]]], ")"]]]], "-", RowBox[List["8", " ", SubsuperscriptBox["a", "1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "43"]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "2"]]], "-", RowBox[List["72", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["8", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["5", " ", SubscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "3"]]], "-", RowBox[List["25", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "-", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["40", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["8", " ", SqrtBox[RowBox[List["-", "z"]]]]]], RowBox[List["Sin", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["12", " ", SubsuperscriptBox["a", "1", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "1", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "-", RowBox[List["8", " ", SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["1536", " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["1728", " ", SubsuperscriptBox["a", "1", "6"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "1", "6"]]], "+", RowBox[List["216", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["1364", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["960", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["400", " ", SubsuperscriptBox["b", "2", "4"]]], "+", RowBox[List["384", " ", SubsuperscriptBox["b", "2", "5"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "2", "6"]]], "+", RowBox[List["384", " ", SubsuperscriptBox["b", "1", "5"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "-", RowBox[List["1152", " ", SubsuperscriptBox["a", "1", "5"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["3", " ", SubscriptBox["b", "1"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "-", RowBox[List["16", " ", SubsuperscriptBox["b", "1", "4"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["72", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["60", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]], "+", RowBox[List["64", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "-", RowBox[List["71", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["20", " ", SubsuperscriptBox["b", "2", "3"]]]]], ")"]]]], "+", RowBox[List[SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["1364", "+", RowBox[List["13248", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["9888", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["768", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["960", " ", SubsuperscriptBox["b", "2", "4"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["27", "+", RowBox[List["2155", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["1656", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["568", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["b", "2", "4"]]], "+", RowBox[List["48", " ", SubsuperscriptBox["b", "2", "5"]]]]], ")"]]]], "+", RowBox[List["48", " ", SubsuperscriptBox["a", "1", "4"], " ", RowBox[List["(", RowBox[List["693", "+", RowBox[List["12", " ", SubsuperscriptBox["b", "1", "2"]]], "+", RowBox[List["488", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["61", "+", RowBox[List["21", " ", SubscriptBox["b", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["64", " ", SubsuperscriptBox["a", "1", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "585"]], "+", RowBox[List["28", " ", SubsuperscriptBox["b", "1", "3"]]], "-", RowBox[List["853", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["108", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["28", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["5", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "-", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["853", "+", RowBox[List["696", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["60", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["12", " ", SubsuperscriptBox["a", "1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1323"]], "+", RowBox[List["16", " ", SubsuperscriptBox["b", "1", "4"]]], "-", RowBox[List["4304", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["1432", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["448", " ", SubsuperscriptBox["b", "2", "3"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["b", "2", "4"]]], "+", RowBox[List["64", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "-", RowBox[List["8", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["179", "+", RowBox[List["184", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["52", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "269"]], "-", RowBox[List["449", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["92", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "3"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["8", " ", SubscriptBox["a", "1"], " ", RowBox[List["(", RowBox[List["27", "+", RowBox[List["48", " ", SubsuperscriptBox["b", "1", "5"]]], "+", RowBox[List["2155", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["1656", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["568", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["b", "2", "4"]]], "+", RowBox[List["48", " ", SubsuperscriptBox["b", "2", "5"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["b", "1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71"]], "-", RowBox[List["72", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]], "+", RowBox[List["24", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["69", "+", RowBox[List["141", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["60", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "3"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["2155", "+", RowBox[List["8112", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["3384", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["576", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["b", "2", "4"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 72 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 43 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 25 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 56 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 25 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1536 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1728 </mn> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 6 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 1152 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 5 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 61 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 488 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 693 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 696 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 853 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 108 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 853 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 585 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 52 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 184 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 179 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 92 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 449 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 269 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 448 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 1432 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 4304 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 1323 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 5 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 72 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 71 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 141 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 69 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 144 </mn> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 576 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 3384 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8112 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 2155 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 5 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 568 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 1656 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 2155 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 27 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 6 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 6 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 384 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 5 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 400 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 960 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 1364 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 216 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 384 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 5 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 72 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 71 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 960 </mn> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 768 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 9888 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 13248 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1364 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 5 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 568 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 1656 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 2155 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 27 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 315 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 512 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -43 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 25 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 56 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -15 </cn> </apply> </apply> <ci> … </ci> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> -3 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1536 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1728 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1152 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 11 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 61 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 488 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 693 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 696 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 853 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 108 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 853 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -585 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 52 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 184 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 179 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 92 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 449 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -269 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 448 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1432 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4304 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1323 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -71 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 141 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 69 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 576 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3384 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8112 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2155 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 568 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1656 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2155 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 27 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 384 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 400 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 960 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1364 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 216 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 384 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 25 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 71 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -15 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -960 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 768 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9888 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13248 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1364 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 568 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1656 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2155 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 27 </cn> </apply> </apply> <cn type='integer'> -315 </cn> </apply> </apply> <ci> … </ci> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", SubscriptBox["a_", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "15"]], "+", RowBox[List["144", " ", SubsuperscriptBox["aa", "1", "4"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["bb", "1", "4"]]], "+", RowBox[List["16", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["56", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "2", "3"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["bb", "2", "4"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "-", RowBox[List["64", " ", SubsuperscriptBox["aa", "1", "3"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", SubscriptBox["bb", "1"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["8", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["25", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "3"]]]]], ")"]]]], "-", RowBox[List["8", " ", SubsuperscriptBox["aa", "1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "43"]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "2"]]], "-", RowBox[List["72", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["8", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["5", " ", SubscriptBox["bb", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "3"]]], "-", RowBox[List["25", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "-", RowBox[List[SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["40", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]]]], ")"]]]]]], RowBox[List["512", " ", "z"]]], "+", "\[Ellipsis]"]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["12", " ", SubsuperscriptBox["aa", "1", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "1", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "-", RowBox[List["8", " ", SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["-", "315"]], "+", RowBox[List["1728", " ", SubsuperscriptBox["aa", "1", "6"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "1", "6"]]], "+", RowBox[List["216", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["1364", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["960", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["400", " ", SubsuperscriptBox["bb", "2", "4"]]], "+", RowBox[List["384", " ", SubsuperscriptBox["bb", "2", "5"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "2", "6"]]], "+", RowBox[List["384", " ", SubsuperscriptBox["bb", "1", "5"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "-", RowBox[List["1152", " ", SubsuperscriptBox["aa", "1", "5"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["3", " ", SubscriptBox["bb", "1"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "-", RowBox[List["16", " ", SubsuperscriptBox["bb", "1", "4"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["72", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["60", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]], "+", RowBox[List["64", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "15"]], "-", RowBox[List["71", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["20", " ", SubsuperscriptBox["bb", "2", "3"]]]]], ")"]]]], "+", RowBox[List[SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["1364", "+", RowBox[List["13248", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["9888", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["768", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["960", " ", SubsuperscriptBox["bb", "2", "4"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["27", "+", RowBox[List["2155", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["1656", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["568", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["bb", "2", "4"]]], "+", RowBox[List["48", " ", SubsuperscriptBox["bb", "2", "5"]]]]], ")"]]]], "+", RowBox[List["48", " ", SubsuperscriptBox["aa", "1", "4"], " ", RowBox[List["(", RowBox[List["693", "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "1", "2"]]], "+", RowBox[List["488", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["61", "+", RowBox[List["21", " ", SubscriptBox["bb", "2"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["64", " ", SubsuperscriptBox["aa", "1", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "585"]], "+", RowBox[List["28", " ", SubsuperscriptBox["bb", "1", "3"]]], "-", RowBox[List["853", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["108", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["28", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["5", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "-", RowBox[List[SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["853", "+", RowBox[List["696", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["60", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["12", " ", SubsuperscriptBox["aa", "1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1323"]], "+", RowBox[List["16", " ", SubsuperscriptBox["bb", "1", "4"]]], "-", RowBox[List["4304", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["1432", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["448", " ", SubsuperscriptBox["bb", "2", "3"]]], "+", RowBox[List["16", " ", SubsuperscriptBox["bb", "2", "4"]]], "+", RowBox[List["64", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "-", RowBox[List["8", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["179", "+", RowBox[List["184", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["52", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]], "+", RowBox[List["16", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "269"]], "-", RowBox[List["449", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["92", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "3"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["8", " ", SubscriptBox["aa", "1"], " ", RowBox[List["(", RowBox[List["27", "+", RowBox[List["48", " ", SubsuperscriptBox["bb", "1", "5"]]], "+", RowBox[List["2155", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["1656", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["568", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["bb", "2", "4"]]], "+", RowBox[List["48", " ", SubsuperscriptBox["bb", "2", "5"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["bb", "1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71"]], "-", RowBox[List["72", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]], "+", RowBox[List["24", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["69", "+", RowBox[List["141", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["60", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "3"]]]]], ")"]]]], "+", RowBox[List[SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["2155", "+", RowBox[List["8112", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["3384", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["576", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["144", " ", SubsuperscriptBox["bb", "2", "4"]]]]], ")"]]]]]], ")"]]]]]], RowBox[List["1536", " ", "z"]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["8", " ", SqrtBox[RowBox[List["-", "z"]]]]]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|