|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.22.07.0004.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1]}, {Subscript[b, 1], Subscript[b, 2]},
z] == (1/(2 Pi I)) ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/
Gamma[Subscript[a, 1]]) Integrate[(Gamma[s] Gamma[Subscript[a, 1] - s])/
(Gamma[Subscript[b, 1] - s] Gamma[Subscript[b, 2] - s])/(-z)^s,
{s, \[Gamma] - I Infinity, \[Gamma] + I Infinity}] /;
0 < \[Gamma] < Min[Re[Subscript[a, 1]],
1/4 + Re[Subscript[b, 1] + Subscript[b, 2] - Subscript[a, 1]]/2] && z < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", SubscriptBox["a", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List[" ", RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", "s"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", "s"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", "s"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["Re", "[", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"]]], "]"]], "2"]]]]], "]"]]]], "\[And]", RowBox[List["z", "<", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mi> γ </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mrow> <mi> γ </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> s </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> < </mo> <mi> γ </mi> <mo> < </mo> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> z </mi> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> s </ci> </bvar> <lowlimit> <apply> <plus /> <ci> γ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <plus /> <ci> γ </ci> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> γ </ci> <apply> <min /> <apply> <real /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <real /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <lt /> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", SubscriptBox["a_", "1"], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", "s"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", "s"]], "]"]]]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]]]]], "/;", RowBox[List[RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["aa", "1"], "]"]], ",", RowBox[List[FractionBox["1", "4"], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"]]], "]"]]]]]]]], "]"]]]], "&&", RowBox[List["z", "<", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|