|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.0032.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[a, 5 - a, c, 1/2] ==
((2^(5 - c) Sqrt[Pi] Gamma[c])/((a - 1) (a - 2) (a - 3) (a - 4)))
((2 (c - 3)^2 - (a - 2) (a - 3))/(Gamma[(c + a)/2 - 2]
Gamma[(c - a + 1)/2]) - (4 (c - 3))/(Gamma[(a + c - 5)/2]
Gamma[(c - a)/2]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", RowBox[List["5", "-", "a"]], ",", "c", ",", FractionBox["1", "2"]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["5", "-", "c"]]], SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", "c", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "4"]], ")"]]]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", "3"]], ")"]], "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "a"]], "2"], "-", "2"]], "]"]], RowBox[List["Gamma", "[", FractionBox[RowBox[List["c", "-", "a", "+", "1"]], "2"], "]"]]]]], "-", FractionBox[RowBox[List["4", RowBox[List["(", RowBox[List["c", "-", "3"]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", FractionBox[RowBox[List["a", "+", "c", "-", "5"]], "2"], "]"]], RowBox[List["Gamma", "[", FractionBox[RowBox[List["c", "-", "a"]], "2"], "]"]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["5", "-", "a"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox["1", "2"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 5 </mn> <mo> - </mo> <mi> c </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mn> 5 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> c </ci> <cn type='integer'> -3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> c </ci> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> c </ci> <cn type='integer'> -5 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", RowBox[List["5", "-", "a_"]], ",", "c_", ",", FractionBox["1", "2"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["5", "-", "c"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", "c", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", "3"]], ")"]], "2"]]], "-", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["c", "+", "a"]], "2"], "-", "2"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["c", "-", "a", "+", "1"]], ")"]]]], "]"]]]]], "-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["c", "-", "3"]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["a", "+", "c", "-", "5"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["c", "-", "a"]], "2"], "]"]]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "4"]], ")"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|