| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.0048.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[a, a + 1/2, 3/2 - 2 a, -(1/3)] == 
 (2/Sqrt[Pi]) (9/8)^(2 a) ((Gamma[4/3] Gamma[3/2 - 2 a])/Gamma[4/3 - 2 a]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", RowBox[List["a", "+", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", "a"]]]], ",", RowBox[List["-", FractionBox["1", "3"]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["2", SqrtBox["\[Pi]"]], SuperscriptBox[RowBox[List["(", FractionBox["9", "8"], ")"]], RowBox[List["2", "a"]]], FractionBox[RowBox[List[RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", "a"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", RowBox[List["2", "a"]]]], "]"]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> , </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", " ", "a"]]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox["1", "3"]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mtext>   </mtext>  </mrow>  <mrow>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 4 </mn>  <mn> 3 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 9 </mn>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 4 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> Hypergeometric2F1 </ci>  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <cn type='rational'> 3 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='rational'> 4 <sep /> 3 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <cn type='rational'> 9 <sep /> 8 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <cn type='rational'> 4 <sep /> 3 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='rational'> 3 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", RowBox[List["a_", "+", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", " ", "a_"]]]], ",", RowBox[List["-", FractionBox["1", "3"]]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", FractionBox["9", "8"], ")"]], RowBox[List["2", " ", "a"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", FractionBox["4", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", RowBox[List["2", " ", "a"]]]], "]"]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", RowBox[List["2", " ", "a"]]]], "]"]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |