Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > Values at other z > Values at z including phi





http://functions.wolfram.com/07.23.03.0666.01









  


  










Input Form





Hypergeometric2F1[a, 1 - a, (3 a)/2, 1 - GoldenRatio] == (5^(1/4 - (5 a)/4) (3 + Sqrt[5]) GoldenRatio^(-(5/2) + (3 a)/2) Pi Gamma[(3 a)/2])/(Gamma[2/5 + a/2] Gamma[3/5 + a/2] Gamma[a/2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", RowBox[List["1", "-", "a"]], ",", FractionBox[RowBox[List["3", " ", "a"]], "2"], ",", RowBox[List["1", "-", "GoldenRatio"]]]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["5", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["5", " ", "a"]], "4"]]]], " ", RowBox[List["(", RowBox[List["3", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["GoldenRatio", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", FractionBox[RowBox[List["3", " ", "a"]], "2"]]]], " ", "\[Pi]", " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["3", " ", "a"]], "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["a", "2"], "]"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#981; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;a&quot;]], &quot;2&quot;], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, TagBox[&quot;\[Phi]&quot;, Function[List[], GoldenRatio]]]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mn> 5 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mi> &#981; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Phi]&quot;, Function[List[], GoldenRatio]] </annotation> </semantics> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 2 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> GoldenRatio </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 5 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> GoldenRatio </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <pi /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 2 <sep /> 5 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", RowBox[List["1", "-", "a_"]], ",", FractionBox[RowBox[List["3", " ", "a_"]], "2"], ",", RowBox[List["1", "-", "GoldenRatio"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["5", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["5", " ", "a"]], "4"]]]], " ", RowBox[List["(", RowBox[List["3", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["GoldenRatio", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", FractionBox[RowBox[List["3", " ", "a"]], "2"]]]], " ", "\[Pi]", " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["3", " ", "a"]], "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["a", "2"], "]"]]]]]]]]]










Contributed by





Bill Gosper










Date Added to functions.wolfram.com (modification date)





2007-05-02