|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.0666.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[a, 1 - a, (3 a)/2, 1 - GoldenRatio] ==
(5^(1/4 - (5 a)/4) (3 + Sqrt[5]) GoldenRatio^(-(5/2) + (3 a)/2) Pi
Gamma[(3 a)/2])/(Gamma[2/5 + a/2] Gamma[3/5 + a/2] Gamma[a/2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", RowBox[List["1", "-", "a"]], ",", FractionBox[RowBox[List["3", " ", "a"]], "2"], ",", RowBox[List["1", "-", "GoldenRatio"]]]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["5", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["5", " ", "a"]], "4"]]]], " ", RowBox[List["(", RowBox[List["3", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["GoldenRatio", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", FractionBox[RowBox[List["3", " ", "a"]], "2"]]]], " ", "\[Pi]", " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["3", " ", "a"]], "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["a", "2"], "]"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ϕ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "a"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["3", " ", "a"]], "2"], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List["1", "-", TagBox["\[Phi]", Function[List[], GoldenRatio]]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mfrac> <mrow> <msup> <mn> 5 </mn> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <semantics> <mi> ϕ </mi> <annotation encoding='Mathematica'> TagBox["\[Phi]", Function[List[], GoldenRatio]] </annotation> </semantics> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 2 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> GoldenRatio </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 5 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> GoldenRatio </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <pi /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 2 <sep /> 5 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", RowBox[List["1", "-", "a_"]], ",", FractionBox[RowBox[List["3", " ", "a_"]], "2"], ",", RowBox[List["1", "-", "GoldenRatio"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["5", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["5", " ", "a"]], "4"]]]], " ", RowBox[List["(", RowBox[List["3", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["GoldenRatio", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], "+", FractionBox[RowBox[List["3", " ", "a"]], "2"]]]], " ", "\[Pi]", " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["3", " ", "a"]], "2"], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "5"], "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["a", "2"], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|