Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > Specialized values > For fixed a, b, z





http://functions.wolfram.com/07.23.03.0102.01









  


  










Input Form





Hypergeometric2F1[a, b, (a + b)/2 + 1, z] == (1/(z (b - a))) Gamma[(a + b)/2 + 1] (z - z^2)^((2 - a - b)/4) (LegendreP[(a - b)/2, 1 - (a + b)/2, 2, 1 - 2 z] - LegendreP[(a - b)/2 - 1, 1 - (a + b)/2, 2, 1 - 2 z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", RowBox[List[FractionBox[RowBox[List["a", "+", "b"]], "2"], "+", "1"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["z", RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["a", "+", "b"]], "2"], "+", "1"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SuperscriptBox["z", "2"]]], ")"]], FractionBox[RowBox[List["2", "-", "a", "-", "b"]], "4"]], RowBox[List["(", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List[FractionBox[RowBox[List["a", "-", "b"]], "2"], ",", RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], ",", "2", ",", RowBox[List["1", "-", RowBox[List["2", "z"]]]]]], "]"]], "-", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["a", "-", "b"]], "2"], "-", "1"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], ",", "2", ",", RowBox[List["1", "-", RowBox[List["2", "z"]]]]]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;b&quot;]], &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <semantics> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;z&quot;]]]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <semantics> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;z&quot;]]]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> LegendreP </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> LegendreP </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", "b_", ",", RowBox[List[FractionBox[RowBox[List["a_", "+", "b_"]], "2"], "+", "1"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["a", "+", "b"]], "2"], "+", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["2", "-", "a", "-", "b"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List[FractionBox[RowBox[List["a", "-", "b"]], "2"], ",", RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], ",", "2", ",", RowBox[List["1", "-", RowBox[List["2", " ", "z"]]]]]], "]"]], "-", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List["a", "-", "b"]], "2"], "-", "1"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["a", "+", "b"]], "2"]]], ",", "2", ",", RowBox[List["1", "-", RowBox[List["2", " ", "z"]]]]]], "]"]]]], ")"]]]], RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29