|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.0149.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-n, b, -2 n - 1, z] ==
((((-1)^n n! Gamma[1 - b])/(1 + 2 n)!) (1/z)^((b + n)/2) z^((b + 3 n)/2)
((1 + b + 2 n) Sqrt[-1 + z] LegendreP[n, b + n, 2, (-2 + z)/z] +
Sqrt[1/z] Sqrt[z] LegendreP[n, 1 + b + n, 2, (-2 + z)/z]))/
(-1 + z)^((b + n + 1)/2) /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "n"]], ",", "b", ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "n"]], "-", "1"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List["-", FractionBox[RowBox[List["b", "+", "n", "+", "1"]], "2"]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", "z"], ")"]], FractionBox[RowBox[List["b", "+", "n"]], "2"]], " ", SuperscriptBox["z", FractionBox[RowBox[List["b", "+", RowBox[List["3", "n"]]]], "2"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List["b", "+", "n"]], ",", "2", ",", FractionBox[RowBox[List[RowBox[List["-", "2"]], "+", "z"]], "z"]]], "]"]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List["1", "+", "b", "+", "n"]], ",", "2", ",", FractionBox[RowBox[List[RowBox[List["-", "2"]], "+", "z"]], "z"]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", "n"]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n"]], "-", "1"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <msup> <mi> z </mi> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mi> z </mi> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[RowBox[List["z", "-", "2"]], "z"], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> n </mi> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <semantics> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mi> z </mi> </mfrac> <annotation encoding='Mathematica'> TagBox[FractionBox[RowBox[List["z", "-", "2"]], "z"], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <ci> z </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <apply> <plus /> <ci> b </ci> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <apply> <plus /> <ci> b </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "n_"]], ",", "b_", ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n_"]], "-", "1"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["b", "+", "n", "+", "1"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", "z"], ")"]], FractionBox[RowBox[List["b", "+", "n"]], "2"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["3", " ", "n"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "b", "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List["b", "+", "n"]], ",", "2", ",", FractionBox[RowBox[List[RowBox[List["-", "2"]], "+", "z"]], "z"]]], "]"]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", RowBox[List["1", "+", "b", "+", "n"]], ",", "2", ",", FractionBox[RowBox[List[RowBox[List["-", "2"]], "+", "z"]], "z"]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|