|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.0719.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/2), -(11/2), 11/2, -z] ==
-((1/(343597383680 z^(9/2)))
(3 (Sqrt[z] Sqrt[1 + z] (88935 +
2 z (1240855 + 32 z (617463 + z (8739346 + z (-1571226457 + 2 z
(3682667235 + 16 z (-302888815 + 6 z (22242609 - 3018882 z +
82364 z^2)))))))) -
1155 (77 + 8 z (275 + z (4455 + 64 z (990 + z (24255 + 8 z (-43659 +
z (121275 + 8 z (-13860 + z (4455 + 8 (-55 + z) z)))))))))
ArcSinh[Sqrt[z]])))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["343597383680", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]], RowBox[List["(", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["88935", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1240855", "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List["617463", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["8739346", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1571226457"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3682667235", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "302888815"]], "+", RowBox[List["6", " ", "z", " ", RowBox[List["(", RowBox[List["22242609", "-", RowBox[List["3018882", " ", "z"]], "+", RowBox[List["82364", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["1155", " ", RowBox[List["(", RowBox[List["77", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["275", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["4455", "+", RowBox[List["64", " ", "z", " ", RowBox[List["(", RowBox[List["990", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["24255", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "43659"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["121275", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "13860"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["4455", "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "55"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["11", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["11", "2"], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 343597383680 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 82364 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3018882 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 22242609 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 302888815 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3682667235 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1571226457 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 8739346 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 617463 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1240855 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 88935 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 1155 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 55 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4455 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 13860 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 121275 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 43659 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 24255 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 990 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 4455 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 275 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 77 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='rational'> 11 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 343597383680 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 82364 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3018882 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 22242609 </cn> </apply> </apply> <cn type='integer'> -302888815 </cn> </apply> </apply> <cn type='integer'> 3682667235 </cn> </apply> </apply> <cn type='integer'> -1571226457 </cn> </apply> </apply> <cn type='integer'> 8739346 </cn> </apply> </apply> <cn type='integer'> 617463 </cn> </apply> </apply> <cn type='integer'> 1240855 </cn> </apply> </apply> <cn type='integer'> 88935 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1155 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -55 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 4455 </cn> </apply> </apply> <cn type='integer'> -13860 </cn> </apply> </apply> <cn type='integer'> 121275 </cn> </apply> </apply> <cn type='integer'> -43659 </cn> </apply> </apply> <cn type='integer'> 24255 </cn> </apply> </apply> <cn type='integer'> 990 </cn> </apply> </apply> <cn type='integer'> 4455 </cn> </apply> </apply> <cn type='integer'> 275 </cn> </apply> </apply> <cn type='integer'> 77 </cn> </apply> <apply> <times /> <apply> <power /> <ci> sinh </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["88935", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["1240855", "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List["617463", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["8739346", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1571226457"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["3682667235", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "302888815"]], "+", RowBox[List["6", " ", "z", " ", RowBox[List["(", RowBox[List["22242609", "-", RowBox[List["3018882", " ", "z"]], "+", RowBox[List["82364", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["1155", " ", RowBox[List["(", RowBox[List["77", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["275", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["4455", "+", RowBox[List["64", " ", "z", " ", RowBox[List["(", RowBox[List["990", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["24255", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "43659"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["121275", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "13860"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["4455", "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "55"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["343597383680", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|