|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.0746.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/2), -(9/2), 11/2, -z] ==
-((1/(17179869184 z^(9/2)))
(3 (Sqrt[z] Sqrt[1 + z] (8085 +
2 z (101255 + 8 z (178717 + z (2210439 + 4 z (-77618531 + 4 z
(73209715 + 24 z (-3048500 + z (917913 + 4 z (-16671 +
56 z))))))))) +
1155 (-7 + 4 z (-45 + 8 z (-81 + 16 z (-63 + z (-1323 + 4 z
(3969 + 4 z (-2205 + 4 z (378 + z (-81 + 4 z)))))))))
ArcSinh[Sqrt[z]])))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]], RowBox[List["(", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["8085", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["101255", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["178717", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2210439", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "77618531"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["73209715", "+", RowBox[List["24", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3048500"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["917913", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16671"]], "+", RowBox[List["56", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["1155", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "45"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "81"]], "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "63"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1323"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["3969", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2205"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["378", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "81"]], "+", RowBox[List["4", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["9", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["11", "2"], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 17179869184 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 56 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 16671 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 917913 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3048500 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 73209715 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 77618531 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2210439 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 178717 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 101255 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 8085 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 1155 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 81 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 378 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2205 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3969 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1323 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 63 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 81 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 45 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <cn type='rational'> 11 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 17179869184 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 56 </cn> <ci> z </ci> </apply> <cn type='integer'> -16671 </cn> </apply> </apply> <cn type='integer'> 917913 </cn> </apply> </apply> <cn type='integer'> -3048500 </cn> </apply> </apply> <cn type='integer'> 73209715 </cn> </apply> </apply> <cn type='integer'> -77618531 </cn> </apply> </apply> <cn type='integer'> 2210439 </cn> </apply> </apply> <cn type='integer'> 178717 </cn> </apply> </apply> <cn type='integer'> 101255 </cn> </apply> </apply> <cn type='integer'> 8085 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1155 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='integer'> -81 </cn> </apply> </apply> <cn type='integer'> 378 </cn> </apply> </apply> <cn type='integer'> -2205 </cn> </apply> </apply> <cn type='integer'> 3969 </cn> </apply> </apply> <cn type='integer'> -1323 </cn> </apply> </apply> <cn type='integer'> -63 </cn> </apply> </apply> <cn type='integer'> -81 </cn> </apply> </apply> <cn type='integer'> -45 </cn> </apply> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <times /> <apply> <power /> <ci> sinh </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["8085", "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["101255", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["178717", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2210439", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "77618531"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["73209715", "+", RowBox[List["24", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3048500"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["917913", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16671"]], "+", RowBox[List["56", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["1155", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "45"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "81"]], "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "63"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1323"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["3969", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2205"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["378", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "81"]], "+", RowBox[List["4", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List["17179869184", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|