Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a=-11/2, b>=a > For fixed z and a=-11/2, b=2





http://functions.wolfram.com/07.23.03.0920.01









  


  










Input Form





Hypergeometric2F1[-(11/2), 2, -(7/2), -z] == 1 + (11/140) z (-40 + 3 z (36 + 7 z (-16 + 5 z (20 + 39 z)))) + (99/4) z^(9/2) (11 + 13 z) ArcTan[Sqrt[z]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "2", ",", RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List["1", "+", RowBox[List[FractionBox["11", "140"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "40"]], "+", RowBox[List["3", " ", "z", " ", RowBox[List["(", RowBox[List["36", "+", RowBox[List["7", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "+", RowBox[List["5", " ", "z", " ", RowBox[List["(", RowBox[List["20", "+", RowBox[List["39", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["99", "4"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["13", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 99 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 13 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 140 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 39 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 20 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 36 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 40 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 99 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 13 </cn> <ci> z </ci> </apply> <cn type='integer'> 11 </cn> </apply> <apply> <times /> <apply> <power /> <ci> tan </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 11 <sep /> 140 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 39 </cn> <ci> z </ci> </apply> <cn type='integer'> 20 </cn> </apply> </apply> <cn type='integer'> -16 </cn> </apply> </apply> <cn type='integer'> 36 </cn> </apply> </apply> <cn type='integer'> -40 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "2", ",", RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["1", "+", RowBox[List[FractionBox["11", "140"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "40"]], "+", RowBox[List["3", " ", "z", " ", RowBox[List["(", RowBox[List["36", "+", RowBox[List["7", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "+", RowBox[List["5", " ", "z", " ", RowBox[List["(", RowBox[List["20", "+", RowBox[List["39", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["99", "4"], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["13", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02