|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.1022.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/2), 4, 1/2, z] ==
(1/4096) (4096 -
11 z (14179 + 3 z (-30180 + 91 z (766 + 5 z (-148 + 51 z)))) +
3465 (-1 + z)^2 Sqrt[z] (-7 + 13 z (7 + z (-21 + 17 z))) ArcTanh[Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "4", ",", FractionBox["1", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "4096"], RowBox[List["(", RowBox[List["4096", "-", RowBox[List["11", " ", "z", " ", RowBox[List["(", RowBox[List["14179", "+", RowBox[List["3", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30180"]], "+", RowBox[List["91", " ", "z", " ", RowBox[List["(", RowBox[List["766", "+", RowBox[List["5", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "148"]], "+", RowBox[List["51", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["3465", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["13", " ", "z", " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["17", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4096 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3465 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 13 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 17 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 91 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 51 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 148 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 766 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 30180 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 14179 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 4096 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='integer'> 4 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4096 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3465 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 13 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 17 </cn> <ci> z </ci> </apply> <cn type='integer'> -21 </cn> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <times /> <apply> <power /> <ci> tanh </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 91 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 51 </cn> <ci> z </ci> </apply> <cn type='integer'> -148 </cn> </apply> </apply> <cn type='integer'> 766 </cn> </apply> </apply> <cn type='integer'> -30180 </cn> </apply> </apply> <cn type='integer'> 14179 </cn> </apply> </apply> </apply> <cn type='integer'> 4096 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "4", ",", FractionBox["1", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["4096", "-", RowBox[List["11", " ", "z", " ", RowBox[List["(", RowBox[List["14179", "+", RowBox[List["3", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30180"]], "+", RowBox[List["91", " ", "z", " ", RowBox[List["(", RowBox[List["766", "+", RowBox[List["5", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "148"]], "+", RowBox[List["51", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["3465", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7"]], "+", RowBox[List["13", " ", "z", " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "+", RowBox[List["17", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SqrtBox["z"], "]"]]]]]], "4096"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|