|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.1094.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/2), 11/2, 2, z] ==
(1/(45045 Pi z))
(-4 (385 + z (-71199 + 8 z (101339 + 16 z (-24597 +
128 z (333 - 266 z + 80 z^2))))) EllipticE[z] +
4 (-1 + z) (-385 +
4 z (12121 + 16 z (-7055 + 32 z (661 + 16 z (-49 + 20 z)))))
EllipticK[z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["11", "2"], ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["45045", " ", "\[Pi]", " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["385", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71199"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["101339", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "24597"]], "+", RowBox[List["128", " ", "z", " ", RowBox[List["(", RowBox[List["333", "-", RowBox[List["266", " ", "z"]], "+", RowBox[List["80", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "385"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["12121", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7055"]], "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List["661", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "49"]], "+", RowBox[List["20", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 2 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["2", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 45045 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 49 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 661 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 7055 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 12121 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 385 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 128 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 80 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 266 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 333 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 24597 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 101339 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 71199 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 385 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 45045 </cn> <pi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <ci> z </ci> </apply> <cn type='integer'> -49 </cn> </apply> </apply> <cn type='integer'> 661 </cn> </apply> </apply> <cn type='integer'> -7055 </cn> </apply> </apply> <cn type='integer'> 12121 </cn> </apply> </apply> <cn type='integer'> -385 </cn> </apply> <apply> <times /> <ci> K </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 128 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 80 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 266 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 333 </cn> </apply> </apply> <cn type='integer'> -24597 </cn> </apply> </apply> <cn type='integer'> 101339 </cn> </apply> </apply> <cn type='integer'> -71199 </cn> </apply> </apply> <cn type='integer'> 385 </cn> </apply> <apply> <times /> <exponentiale /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["11", "2"], ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["385", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71199"]], "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List["101339", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "24597"]], "+", RowBox[List["128", " ", "z", " ", RowBox[List["(", RowBox[List["333", "-", RowBox[List["266", " ", "z"]], "+", RowBox[List["80", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "385"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["12121", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7055"]], "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List["661", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "49"]], "+", RowBox[List["20", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]]]], RowBox[List["45045", " ", "\[Pi]", " ", "z"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|