|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.1109.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/2), 6, -(3/2), z] == (1/(4096 (-1 + z)^2))
(4096 + z (81920 - 13 z (-204800 +
11 z (336835 + 21 z (-71380 + 17 z (7774 + 95 z (-68 + 21 z)))))) +
45045 (-1 + z)^2 z^(5/2) (-231 + 17 z (99 + 19 z (-11 + 7 z)))
ArcTanh[Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "6", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4096", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]]], RowBox[List["(", RowBox[List["4096", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["81920", "-", RowBox[List["13", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "204800"]], "+", RowBox[List["11", " ", "z", " ", RowBox[List["(", RowBox[List["336835", "+", RowBox[List["21", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71380"]], "+", RowBox[List["17", " ", "z", " ", RowBox[List["(", RowBox[List["7774", "+", RowBox[List["95", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "68"]], "+", RowBox[List["21", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["45045", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "231"]], "+", RowBox[List["17", " ", "z", " ", RowBox[List["(", RowBox[List["99", "+", RowBox[List["19", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11"]], "+", RowBox[List["7", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4096 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 45045 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 17 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 19 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 99 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 231 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 81920 </mn> <mo> - </mo> <mrow> <mn> 13 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 17 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 95 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 68 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 7774 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 71380 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 336835 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 204800 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4096 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='integer'> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4096 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 45045 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 17 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 19 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> z </ci> </apply> <cn type='integer'> -11 </cn> </apply> </apply> <cn type='integer'> 99 </cn> </apply> </apply> <cn type='integer'> -231 </cn> </apply> <apply> <times /> <apply> <power /> <ci> tanh </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 81920 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 11 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 21 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 17 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 95 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 21 </cn> <ci> z </ci> </apply> <cn type='integer'> -68 </cn> </apply> </apply> <cn type='integer'> 7774 </cn> </apply> </apply> <cn type='integer'> -71380 </cn> </apply> </apply> <cn type='integer'> 336835 </cn> </apply> </apply> <cn type='integer'> -204800 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <cn type='integer'> 4096 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "6", ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["4096", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["81920", "-", RowBox[List["13", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "204800"]], "+", RowBox[List["11", " ", "z", " ", RowBox[List["(", RowBox[List["336835", "+", RowBox[List["21", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "71380"]], "+", RowBox[List["17", " ", "z", " ", RowBox[List["(", RowBox[List["7774", "+", RowBox[List["95", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "68"]], "+", RowBox[List["21", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["45045", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "231"]], "+", RowBox[List["17", " ", "z", " ", RowBox[List["(", RowBox[List["99", "+", RowBox[List["19", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11"]], "+", RowBox[List["7", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SqrtBox["z"], "]"]]]]]], RowBox[List["4096", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|