|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.2217.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(5/2), 11/2, 5, z] == (1/(945945 Pi z^4))
(256
(2 (-8 + z (-28 + z (-97 + 16 z (-31 + 2 z (259 + 16 z (-29 + 14 z))))))
EllipticE[z] - (-1 + z)
(16 + z (64 + z (229 + 32 z (35 + 4 z (-67 + 56 z))))) EllipticK[z]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["11", "2"], ",", "5", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["945945", " ", "\[Pi]", " ", SuperscriptBox["z", "4"]]]], RowBox[List["(", RowBox[List["256", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "28"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "97"]], "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "31"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["259", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "29"]], "+", RowBox[List["14", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["16", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["64", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["229", "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List["35", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "67"]], "+", RowBox[List["56", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 5 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["5", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 945945 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 256 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 14 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 29 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 259 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 31 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 97 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 28 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 56 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 67 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 35 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 229 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 64 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='integer'> 5 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 945945 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 14 </cn> <ci> z </ci> </apply> <cn type='integer'> -29 </cn> </apply> </apply> <cn type='integer'> 259 </cn> </apply> </apply> <cn type='integer'> -31 </cn> </apply> </apply> <cn type='integer'> -97 </cn> </apply> </apply> <cn type='integer'> -28 </cn> </apply> </apply> <cn type='integer'> -8 </cn> </apply> <apply> <times /> <exponentiale /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 56 </cn> <ci> z </ci> </apply> <cn type='integer'> -67 </cn> </apply> </apply> <cn type='integer'> 35 </cn> </apply> </apply> <cn type='integer'> 229 </cn> </apply> </apply> <cn type='integer'> 64 </cn> </apply> </apply> <cn type='integer'> 16 </cn> </apply> <apply> <times /> <ci> K </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", FractionBox["11", "2"], ",", "5", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["256", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "28"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "97"]], "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "31"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["259", "+", RowBox[List["16", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "29"]], "+", RowBox[List["14", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List["16", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["64", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["229", "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List["35", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "67"]], "+", RowBox[List["56", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["945945", " ", "\[Pi]", " ", SuperscriptBox["z", "4"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|