| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.4302.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[4, 6, -(9/2), -z] == (1/(12288 (1 + z)^(29/2))) 
  (Sqrt[1 + z] (12288 + 
     z (237568 + z (2363392 + z (17121280 + z (117354496 + 
             z (1413242880 + z (-6909467453 + 4 z (1443545967 + 
                   z (-263085919 + 58344 z (52 + z)))))))))) + 
   14549535 z^(11/2) (-221 + 2 z (255 + 8 z (-17 + 2 z))) ArcSinh[Sqrt[z]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "6", ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["12288", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["29", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["12288", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["237568", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2363392", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["17121280", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["117354496", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1413242880", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6909467453"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["1443545967", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "263085919"]], "+", RowBox[List["58344", " ", "z", " ", RowBox[List["(", RowBox[List["52", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["14549535", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "221"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["255", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 9 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["4", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["9", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 12288 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 29 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 14549535 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 17 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 255 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 221 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 58344 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 52 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 263085919 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1443545967 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 6909467453 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 1413242880 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 117354496 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 17121280 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 2363392 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 237568 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mn> 12288 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 4 </cn>  <cn type='integer'> 6 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 12288 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 29 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 14549535 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -17 </cn>  </apply>  </apply>  <cn type='integer'> 255 </cn>  </apply>  </apply>  <cn type='integer'> -221 </cn>  </apply>  <apply>  <times />  <apply>  <power />  <ci> sinh </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 58344 </cn>  <ci> z </ci>  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 52 </cn>  </apply>  </apply>  <cn type='integer'> -263085919 </cn>  </apply>  </apply>  <cn type='integer'> 1443545967 </cn>  </apply>  </apply>  <cn type='integer'> -6909467453 </cn>  </apply>  </apply>  <cn type='integer'> 1413242880 </cn>  </apply>  </apply>  <cn type='integer'> 117354496 </cn>  </apply>  </apply>  <cn type='integer'> 17121280 </cn>  </apply>  </apply>  <cn type='integer'> 2363392 </cn>  </apply>  </apply>  <cn type='integer'> 237568 </cn>  </apply>  </apply>  <cn type='integer'> 12288 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "6", ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["12288", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["237568", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["2363392", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["17121280", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["117354496", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["1413242880", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6909467453"]], "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List["1443545967", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "263085919"]], "+", RowBox[List["58344", " ", "z", " ", RowBox[List["(", RowBox[List["52", "+", "z"]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["14549535", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "221"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["255", "+", RowBox[List["8", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17"]], "+", RowBox[List["2", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], RowBox[List["12288", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["29", "/", "2"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |