|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.4406.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[5, 5, -(5/2), -z] == (1/(16384 (1 + z)^(25/2)))
(Sqrt[1 + z] (16384 +
z (360448 + z (5013504 + z (102236160 + z (-820724865 +
2 z (537679803 + 4 z (-41395091 + 2207902 z))))))) -
45045 z^(7/2) (6435 + 32 z (-715 + z (585 + 4 (-30 + z) z)))
ArcSinh[Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["5", ",", "5", ",", RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["16384", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["360448", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["5013504", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["102236160", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "820724865"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["537679803", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "41395091"]], "+", RowBox[List["2207902", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["45045", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["(", RowBox[List["6435", "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "715"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["585", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> , </mo> <mn> 5 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["5", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["5", Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["5", "2"]]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], Hypergeometric2F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16384 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2207902 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 41395091 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 537679803 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 820724865 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 102236160 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5013504 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 360448 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 16384 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 45045 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 30 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 585 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 715 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6435 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 5 </cn> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2207902 </cn> <ci> z </ci> </apply> <cn type='integer'> -41395091 </cn> </apply> </apply> <cn type='integer'> 537679803 </cn> </apply> </apply> <cn type='integer'> -820724865 </cn> </apply> </apply> <cn type='integer'> 102236160 </cn> </apply> </apply> <cn type='integer'> 5013504 </cn> </apply> </apply> <cn type='integer'> 360448 </cn> </apply> </apply> <cn type='integer'> 16384 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 45045 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -30 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 585 </cn> </apply> </apply> <cn type='integer'> -715 </cn> </apply> </apply> <cn type='integer'> 6435 </cn> </apply> <apply> <times /> <apply> <power /> <ci> sinh </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["5", ",", "5", ",", RowBox[List["-", FractionBox["5", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["16384", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["360448", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["5013504", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["102236160", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "820724865"]], "+", RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List["537679803", "+", RowBox[List["4", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "41395091"]], "+", RowBox[List["2207902", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["45045", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]], " ", RowBox[List["(", RowBox[List["6435", "+", RowBox[List["32", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "715"]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["585", "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]]]], RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["25", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|