| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.4618.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(17/3), -(7/3), -(3/2), -z] == 
 (1/(6669 Sqrt[1 + z])) ((6669 + 62491 z + 397670 z^2 + 251800 z^3 - 
     115520 z^4 - 29056 z^5 - 3584 z^6) Cosh[ArcSinh[Sqrt[z]]/3] - 
   Sqrt[z] Sqrt[1 + z] (2223 + 19266 z + 1178264 z^2 + 102336 z^3 + 
     27264 z^4 + 3584 z^5) Sinh[ArcSinh[Sqrt[z]]/3]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["17", "3"]]], ",", RowBox[List["-", FractionBox["7", "3"]]], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["6669", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["6669", "+", RowBox[List["62491", " ", "z"]], "+", RowBox[List["397670", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["251800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["115520", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["29056", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["3584", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]], "3"], "]"]]]], "-", RowBox[List[SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["2223", "+", RowBox[List["19266", " ", "z"]], "+", RowBox[List["1178264", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["102336", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["27264", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3584", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]], "3"], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 17 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["17", "3"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["7", "3"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 6669 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 3584 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 29056 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 115520 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 251800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 397670 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 62491 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 6669 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3584 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 27264 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 102336 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1178264 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 19266 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 2223 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 17 <sep /> 3 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 3 </cn>  </apply>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 6669 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -3584 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 29056 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 115520 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 251800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 397670 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 62491 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 6669 </cn>  </apply>  <apply>  <times />  <ci> cosh </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 3 </cn>  <apply>  <times />  <apply>  <power />  <ci> sinh </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3584 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 27264 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 102336 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1178264 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 19266 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 2223 </cn>  </apply>  <apply>  <times />  <ci> sinh </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 3 </cn>  <apply>  <times />  <apply>  <power />  <ci> sinh </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["17", "3"]]], ",", RowBox[List["-", FractionBox["7", "3"]]], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["6669", "+", RowBox[List["62491", " ", "z"]], "+", RowBox[List["397670", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["251800", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["115520", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["29056", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["3584", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]], "3"], "]"]]]], "-", RowBox[List[SqrtBox["z"], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["2223", "+", RowBox[List["19266", " ", "z"]], "+", RowBox[List["1178264", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["102336", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["27264", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3584", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]], "3"], "]"]]]]]], RowBox[List["6669", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |