| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.4953.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(17/3), 6, 4/3, z] == 
 (1/143489070) (3 (39766250 - 810437515 z + 4526902205 z^2 - 
     10249747508 z^3 + 10124502388 z^4 - 3632108480 z^5) - 
   (1/z^(1/3)) (52360 (154 - 7854 z + 78540 z^2 - 301070 z^3 + 533715 z^4 - 
      442221 z^5 + 138736 z^6) Log[1 - z^(1/3)]) - 
   (1/z^(1/3)) (52360 (-1)^(2/3) (154 - 7854 z + 78540 z^2 - 301070 z^3 + 
      533715 z^4 - 442221 z^5 + 138736 z^6) Log[1 + (-1)^(1/3) z^(1/3)]) + 
   (1/z^(1/3)) (52360 (-1)^(1/3) (154 - 7854 z + 78540 z^2 - 301070 z^3 + 
      533715 z^4 - 442221 z^5 + 138736 z^6) Log[1 - (-1)^(2/3) z^(1/3)])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["17", "3"]]], ",", "6", ",", FractionBox["4", "3"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "143489070"], RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List["39766250", "-", RowBox[List["810437515", " ", "z"]], "+", RowBox[List["4526902205", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["10249747508", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["10124502388", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3632108480", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]], RowBox[List["(", RowBox[List["52360", " ", RowBox[List["(", RowBox[List["154", "-", RowBox[List["7854", " ", "z"]], "+", RowBox[List["78540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["301070", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["533715", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["442221", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["138736", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]], RowBox[List["(", RowBox[List["52360", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["154", "-", RowBox[List["7854", " ", "z"]], "+", RowBox[List["78540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["301070", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["533715", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["442221", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["138736", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]], RowBox[List["(", RowBox[List["52360", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List["154", "-", RowBox[List["7854", " ", "z"]], "+", RowBox[List["78540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["301070", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["533715", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["442221", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["138736", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 17 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 4 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["17", "3"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["4", "3"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 143489070 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 3632108480 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 10124502388 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 10249747508 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4526902205 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 810437515 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 39766250 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 52360 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 138736 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 442221 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 533715 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 301070 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 78540 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 7854 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 154 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 52360 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 138736 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 442221 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 533715 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 301070 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 78540 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 7854 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 154 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </mroot>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 52360 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 138736 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 442221 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 533715 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 301070 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 78540 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 7854 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 154 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 17 <sep /> 3 </cn>  </apply>  <cn type='integer'> 6 </cn>  </list>  <list>  <cn type='rational'> 4 <sep /> 3 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 143489070 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -3632108480 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 10124502388 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 10249747508 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4526902205 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 810437515 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 39766250 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 52360 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 138736 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 442221 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 533715 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 301070 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 78540 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 7854 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 154 </cn>  </apply>  <apply>  <times />  <ci> log </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 52360 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 138736 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 442221 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 533715 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 301070 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 78540 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 7854 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 154 </cn>  </apply>  <apply>  <times />  <ci> log </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 52360 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 138736 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 442221 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 533715 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 301070 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 78540 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 7854 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 154 </cn>  </apply>  <apply>  <times />  <ci> log </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["17", "3"]]], ",", "6", ",", FractionBox["4", "3"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List["39766250", "-", RowBox[List["810437515", " ", "z"]], "+", RowBox[List["4526902205", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["10249747508", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["10124502388", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3632108480", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "-", FractionBox[RowBox[List["52360", " ", RowBox[List["(", RowBox[List["154", "-", RowBox[List["7854", " ", "z"]], "+", RowBox[List["78540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["301070", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["533715", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["442221", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["138736", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], SuperscriptBox["z", RowBox[List["1", "/", "3"]]]], "-", FractionBox[RowBox[List["52360", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["154", "-", RowBox[List["7854", " ", "z"]], "+", RowBox[List["78540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["301070", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["533715", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["442221", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["138736", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], SuperscriptBox["z", RowBox[List["1", "/", "3"]]]], "+", FractionBox[RowBox[List["52360", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List["154", "-", RowBox[List["7854", " ", "z"]], "+", RowBox[List["78540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["301070", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["533715", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["442221", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["138736", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], "143489070"]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |