|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.6118.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(10/3), 6, 14/3, -z] == (1/(301327047 z^(11/3)))
(44 (3 z^(2/3) (280 - 1827 z + 11046 z^2 + 2166710 z^3 + 8047260 z^4 +
9699690 z^5 + 3803800 z^6) - 70 (1 + z)^2 (-8 + 65 z - 416 z^2 +
3952 z^3 + 43472 z^4 + 54340 z^5) Log[1 + z^(1/3)] +
70 (-1)^(1/3) (1 + z)^2 (-8 + 65 z - 416 z^2 + 3952 z^3 + 43472 z^4 +
54340 z^5) Log[1 - (-1)^(1/3) z^(1/3)] - 70 (-1)^(2/3) (1 + z)^2
(-8 + 65 z - 416 z^2 + 3952 z^3 + 43472 z^4 + 54340 z^5)
Log[1 + (-1)^(2/3) z^(1/3)]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["10", "3"]]], ",", "6", ",", FractionBox["14", "3"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["301327047", " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]], RowBox[List["(", RowBox[List["44", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["280", "-", RowBox[List["1827", " ", "z"]], "+", RowBox[List["11046", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2166710", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["8047260", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["9699690", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3803800", " ", SuperscriptBox["z", "6"]]]]], ")"]]]], "-", RowBox[List["70", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["65", " ", "z"]], "-", RowBox[List["416", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["43472", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54340", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["65", " ", "z"]], "-", RowBox[List["416", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["43472", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54340", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], "-", RowBox[List["70", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["65", " ", "z"]], "-", RowBox[List["416", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["43472", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54340", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 10 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 14 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["10", "3"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["14", "3"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 301327047 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 44 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 70 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 54340 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 43472 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3952 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 416 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 65 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 70 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 54340 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 43472 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3952 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 416 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 65 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 70 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 54340 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 43472 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3952 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 416 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 65 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3803800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9699690 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8047260 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2166710 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11046 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1827 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 280 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 10 <sep /> 3 </cn> </apply> <cn type='integer'> 6 </cn> </list> <list> <cn type='rational'> 14 <sep /> 3 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 301327047 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 44 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -70 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 54340 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 43472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 416 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 65 </cn> <ci> z </ci> </apply> <cn type='integer'> -8 </cn> </apply> <apply> <times /> <ci> log </ci> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 70 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 54340 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 43472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 416 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 65 </cn> <ci> z </ci> </apply> <cn type='integer'> -8 </cn> </apply> <apply> <times /> <ci> log </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 70 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 54340 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 43472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 416 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 65 </cn> <ci> z </ci> </apply> <cn type='integer'> -8 </cn> </apply> <apply> <times /> <ci> log </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3803800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9699690 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8047260 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2166710 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11046 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1827 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 280 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["10", "3"]]], ",", "6", ",", FractionBox["14", "3"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["44", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["280", "-", RowBox[List["1827", " ", "z"]], "+", RowBox[List["11046", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2166710", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["8047260", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["9699690", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3803800", " ", SuperscriptBox["z", "6"]]]]], ")"]]]], "-", RowBox[List["70", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["65", " ", "z"]], "-", RowBox[List["416", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["43472", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54340", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["70", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["65", " ", "z"]], "-", RowBox[List["416", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["43472", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54340", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], "-", RowBox[List["70", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["65", " ", "z"]], "-", RowBox[List["416", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3952", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["43472", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54340", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["301327047", " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|