| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.7725.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[2/3, 6, 11/3, -z] == (1/(19683 z^(8/3))) 
  (2 ((3 z^(2/3) (-70 + 98 z + 2955 z^2 + 4445 z^3 + 1820 z^4))/(1 + z)^3 - 
    140 (1 - 4 z + 13 z^2) Log[1 + z^(1/3)] + 
    140 (-1)^(1/3) (1 - 4 z + 13 z^2) Log[1 - (-1)^(1/3) z^(1/3)] - 
    140 (-1)^(2/3) (1 - 4 z + 13 z^2) Log[1 + (-1)^(2/3) z^(1/3)])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["2", "3"], ",", "6", ",", FractionBox["11", "3"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["19683", " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "70"]], "+", RowBox[List["98", " ", "z"]], "+", RowBox[List["2955", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4445", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1820", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]], "-", RowBox[List["140", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "z"]], "+", RowBox[List["13", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "z"]], "+", RowBox[List["13", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], "-", RowBox[List["140", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "z"]], "+", RowBox[List["13", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 11 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["2", "3"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["11", "3"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 19683 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 8 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1820 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4445 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2955 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 98 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 70 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mrow>  <mn> 140 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 13 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 140 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 13 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </mroot>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 140 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 13 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 2 <sep /> 3 </cn>  <cn type='integer'> 6 </cn>  </list>  <list>  <cn type='rational'> 11 <sep /> 3 </cn>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 19683 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 8 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1820 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4445 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2955 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 98 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -70 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 140 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 13 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <ci> log </ci>  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 140 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 13 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <ci> log </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 140 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 13 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <ci> log </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["2", "3"], ",", "6", ",", FractionBox["11", "3"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "70"]], "+", RowBox[List["98", " ", "z"]], "+", RowBox[List["2955", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4445", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1820", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]], "-", RowBox[List["140", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "z"]], "+", RowBox[List["13", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "z"]], "+", RowBox[List["13", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]], "-", RowBox[List["140", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["4", " ", "z"]], "+", RowBox[List["13", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["19683", " ", SuperscriptBox["z", RowBox[List["8", "/", "3"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |