|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.9045.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(23/4), -(19/4), 11/2, z] ==
(32 (-2 (1074076080 - 28961694300 z + 440509927627 z^2 - 5848860835048 z^3 +
133018898423796 z^4 + 1622946543547120 z^5 + 3785631560463650 z^6 +
2776454582964744 z^7 + 654334135003204 z^8 + 37972691353292 z^9 +
78058255275 z^10) EllipticE[(1/2) (1 - Sqrt[z])] +
2 (1074076080 - 28961694300 z + 440509927627 z^2 - 5848860835048 z^3 +
133018898423796 z^4 + 1622946543547120 z^5 + 3785631560463650 z^6 +
2776454582964744 z^7 + 654334135003204 z^8 + 37972691353292 z^9 +
78058255275 z^10) EllipticE[(1/2) (1 + Sqrt[z])] +
(1074076080 + 537038040 Sqrt[z] - 28961694300 z - 14436093980 z^(3/2) +
440509927627 z^2 + 219070603136 z^(5/2) - 5848860835048 z^3 -
2906664687696 z^(7/2) + 133018898423796 z^4 + 363469764800560 z^(9/2) +
1622946543547120 z^5 + 2255594602234520 z^(11/2) +
3785631560463650 z^6 + 3786140037216960 z^(13/2) +
2776454582964744 z^7 + 2173753258453552 z^(15/2) +
654334135003204 z^8 + 410322313675448 z^(17/2) + 37972691353292 z^9 +
18421748244900 z^(19/2) + 78058255275 z^10)
EllipticK[(1/2) (1 - Sqrt[z])] - (1074076080 - 537038040 Sqrt[z] -
28961694300 z + 14436093980 z^(3/2) + 440509927627 z^2 -
219070603136 z^(5/2) - 5848860835048 z^3 + 2906664687696 z^(7/2) +
133018898423796 z^4 - 363469764800560 z^(9/2) + 1622946543547120 z^5 -
2255594602234520 z^(11/2) + 3785631560463650 z^6 -
3786140037216960 z^(13/2) + 2776454582964744 z^7 -
2173753258453552 z^(15/2) + 654334135003204 z^8 -
410322313675448 z^(17/2) + 37972691353292 z^9 -
18421748244900 z^(19/2) + 78058255275 z^10)
EllipticK[(1/2) (1 + Sqrt[z])]) Gamma[3/4]^2)/
(9510247094902125 Pi^(3/2) z^(9/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", RowBox[List["-", FractionBox["19", "4"]]], ",", FractionBox["11", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1074076080", "-", RowBox[List["28961694300", " ", "z"]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1074076080", "-", RowBox[List["28961694300", " ", "z"]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1074076080", "+", RowBox[List["537038040", " ", SqrtBox["z"]]], "-", RowBox[List["28961694300", " ", "z"]], "-", RowBox[List["14436093980", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["219070603136", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2906664687696", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["363469764800560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2255594602234520", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["3786140037216960", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2173753258453552", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["410322313675448", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["18421748244900", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1074076080", "-", RowBox[List["537038040", " ", SqrtBox["z"]]], "-", RowBox[List["28961694300", " ", "z"]], "+", RowBox[List["14436093980", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["219070603136", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2906664687696", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["363469764800560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2255594602234520", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["3786140037216960", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["2173753258453552", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["410322313675448", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["18421748244900", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], ")"]], "/", RowBox[List["(", RowBox[List["9510247094902125", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["23", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["19", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 9510247094902125 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 78058255275 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 37972691353292 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 654334135003204 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2776454582964744 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3785631560463650 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1622946543547120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 133018898423796 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5848860835048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 440509927627 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28961694300 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1074076080 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 78058255275 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 37972691353292 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 654334135003204 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2776454582964744 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3785631560463650 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1622946543547120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 133018898423796 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5848860835048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 440509927627 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28961694300 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1074076080 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 78058255275 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 18421748244900 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 37972691353292 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 410322313675448 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 654334135003204 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2173753258453552 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2776454582964744 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3786140037216960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3785631560463650 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2255594602234520 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1622946543547120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 363469764800560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 133018898423796 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2906664687696 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5848860835048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 219070603136 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 440509927627 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14436093980 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28961694300 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 537038040 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 1074076080 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 78058255275 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 18421748244900 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 37972691353292 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 410322313675448 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 654334135003204 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2173753258453552 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2776454582964744 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3786140037216960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3785631560463650 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2255594602234520 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1622946543547120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 363469764800560 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 133018898423796 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2906664687696 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5848860835048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 219070603136 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 440509927627 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14436093980 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28961694300 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 537038040 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 1074076080 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 19 <sep /> 4 </cn> </apply> </list> <list> <cn type='rational'> 11 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 9510247094902125 </cn> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 78058255275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 37972691353292 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 654334135003204 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2776454582964744 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3785631560463650 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1622946543547120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 133018898423796 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5848860835048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 440509927627 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28961694300 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1074076080 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 78058255275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 37972691353292 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 654334135003204 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2776454582964744 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3785631560463650 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1622946543547120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 133018898423796 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5848860835048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 440509927627 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28961694300 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1074076080 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 78058255275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18421748244900 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 37972691353292 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 410322313675448 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 654334135003204 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2173753258453552 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2776454582964744 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3786140037216960 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3785631560463650 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2255594602234520 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1622946543547120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 363469764800560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 133018898423796 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2906664687696 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5848860835048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 219070603136 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 440509927627 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14436093980 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28961694300 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 537038040 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1074076080 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 78058255275 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 18421748244900 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 37972691353292 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 410322313675448 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 654334135003204 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2173753258453552 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2776454582964744 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3786140037216960 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3785631560463650 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2255594602234520 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1622946543547120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 363469764800560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 133018898423796 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2906664687696 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5848860835048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 219070603136 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 440509927627 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 14436093980 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28961694300 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 537038040 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1074076080 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", RowBox[List["-", FractionBox["19", "4"]]], ",", FractionBox["11", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1074076080", "-", RowBox[List["28961694300", " ", "z"]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1074076080", "-", RowBox[List["28961694300", " ", "z"]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1074076080", "+", RowBox[List["537038040", " ", SqrtBox["z"]]], "-", RowBox[List["28961694300", " ", "z"]], "-", RowBox[List["14436093980", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["219070603136", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2906664687696", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["363469764800560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2255594602234520", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["3786140037216960", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2173753258453552", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["410322313675448", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["18421748244900", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1074076080", "-", RowBox[List["537038040", " ", SqrtBox["z"]]], "-", RowBox[List["28961694300", " ", "z"]], "+", RowBox[List["14436093980", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["440509927627", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["219070603136", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["5848860835048", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2906664687696", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["133018898423796", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["363469764800560", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["1622946543547120", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2255594602234520", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3785631560463650", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["3786140037216960", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["2776454582964744", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["2173753258453552", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["654334135003204", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["410322313675448", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["37972691353292", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["18421748244900", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["78058255275", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]], RowBox[List["9510247094902125", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|