|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.9827.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(23/4), 3, 21/4, z] == (1/(601295421440 z^(17/4)))
(221 (-2 z^(1/4) (19684665 - 71773317 z + 24900260 z^2 + 61241180 z^3 -
606782610 z^4 + 1359767130 z^5 - 1530938604 z^6 + 966390540 z^7 -
328149855 z^8 + 46940355 z^9) + 1514205 (-1 + z)^8 (13 + 54 z + 93 z^2)
ArcTan[z^(1/4)] + 1514205 (-1 + z)^8 (13 + 54 z + 93 z^2)
ArcTanh[z^(1/4)]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", "3", ",", FractionBox["21", "4"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["601295421440", " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]]], RowBox[List["(", RowBox[List["221", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["19684665", "-", RowBox[List["71773317", " ", "z"]], "+", RowBox[List["24900260", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["61241180", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["606782610", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1359767130", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1530938604", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["966390540", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["328149855", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["46940355", " ", SuperscriptBox["z", "9"]]]]], ")"]]]], "+", RowBox[List["1514205", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "8"], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["54", " ", "z"]], "+", RowBox[List["93", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], "]"]]]], "+", RowBox[List["1514205", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "8"], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["54", " ", "z"]], "+", RowBox[List["93", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 3 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["23", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["3", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["21", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 601295421440 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 221 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1514205 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 93 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 54 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1514205 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 93 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 54 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 46940355 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 328149855 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 966390540 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1530938604 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1359767130 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 606782610 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 61241180 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24900260 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 71773317 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 19684665 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> <cn type='integer'> 3 </cn> </list> <list> <cn type='rational'> 21 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 601295421440 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 221 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1514205 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 93 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 54 </cn> <ci> z </ci> </apply> <cn type='integer'> 13 </cn> </apply> <apply> <arctan /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1514205 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 93 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 54 </cn> <ci> z </ci> </apply> <cn type='integer'> 13 </cn> </apply> <apply> <arctanh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 46940355 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 328149855 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 966390540 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1530938604 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1359767130 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 606782610 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 61241180 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24900260 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 71773317 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 19684665 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", "3", ",", FractionBox["21", "4"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["221", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["19684665", "-", RowBox[List["71773317", " ", "z"]], "+", RowBox[List["24900260", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["61241180", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["606782610", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1359767130", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1530938604", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["966390540", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["328149855", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["46940355", " ", SuperscriptBox["z", "9"]]]]], ")"]]]], "+", RowBox[List["1514205", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "8"], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["54", " ", "z"]], "+", RowBox[List["93", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], "]"]]]], "+", RowBox[List["1514205", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "8"], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["54", " ", "z"]], "+", RowBox[List["93", " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], "]"]]]]]], ")"]]]], RowBox[List["601295421440", " ", SuperscriptBox["z", RowBox[List["17", "/", "4"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|