Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 4 and fixed z > For fixed z and a=-23/4, b>=a > For fixed z and a=-23/4, b=19/4





http://functions.wolfram.com/07.23.03.a7qb.01









  


  










Input Form





Hypergeometric2F1[-(23/4), 19/4, -(9/2), -z] == (Sqrt[z] (-12899328 z^9 + 1008 (1 + Sqrt[1 + z]) + 169728 z^8 (-287 + 38 Sqrt[1 + z]) - 28 z (97 + 115 Sqrt[1 + z]) + 49920 z^7 (-1367 + 391 Sqrt[1 + z]) + 99 z^4 (997 + 1150 Sqrt[1 + z]) + z^2 (7247 + 8983 Sqrt[1 + z]) - z^3 (22610 + 27567 Sqrt[1 + z]) + 624 z^6 (-66869 + 31866 Sqrt[1 + z]) + 12 z^5 (-763537 + 580684 Sqrt[1 + z])))/(2016 Sqrt[2] (1 + z)^(7/2) Sqrt[-1 + Sqrt[1 + z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", FractionBox["19", "4"], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "12899328"]], " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1008", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]]]], "+", RowBox[List["169728", " ", SuperscriptBox["z", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "287"]], "+", RowBox[List["38", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "-", RowBox[List["28", " ", "z", " ", RowBox[List["(", RowBox[List["97", "+", RowBox[List["115", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["49920", " ", SuperscriptBox["z", "7"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1367"]], "+", RowBox[List["391", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["99", " ", SuperscriptBox["z", "4"], " ", RowBox[List["(", RowBox[List["997", "+", RowBox[List["1150", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["7247", "+", RowBox[List["8983", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["(", RowBox[List["22610", "+", RowBox[List["27567", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["624", " ", SuperscriptBox["z", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "66869"]], "+", RowBox[List["31866", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["12", " ", SuperscriptBox["z", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "763537"]], "+", RowBox[List["580684", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2016", " ", SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["7", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;23&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;19&quot;, &quot;4&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 12899328 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 169728 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 38 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mn> 287 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 49920 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 391 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mn> 1367 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 624 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 31866 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mn> 66869 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 580684 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> - </mo> <mn> 763537 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 99 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1150 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 997 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 27567 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 22610 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8983 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 7247 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 115 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 97 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 1008 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2016 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> <cn type='rational'> 19 <sep /> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -12899328 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 169728 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 38 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -287 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 49920 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 391 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1367 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 624 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 31866 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -66869 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 580684 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -763537 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 99 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1150 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 997 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 27567 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 22610 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8983 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 7247 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 115 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 97 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1008 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2016 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", FractionBox["19", "4"], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "12899328"]], " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1008", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], ")"]]]], "+", RowBox[List["169728", " ", SuperscriptBox["z", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "287"]], "+", RowBox[List["38", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "-", RowBox[List["28", " ", "z", " ", RowBox[List["(", RowBox[List["97", "+", RowBox[List["115", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["49920", " ", SuperscriptBox["z", "7"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1367"]], "+", RowBox[List["391", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["99", " ", SuperscriptBox["z", "4"], " ", RowBox[List["(", RowBox[List["997", "+", RowBox[List["1150", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["7247", "+", RowBox[List["8983", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["(", RowBox[List["22610", "+", RowBox[List["27567", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["624", " ", SuperscriptBox["z", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "66869"]], "+", RowBox[List["31866", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]], "+", RowBox[List["12", " ", SuperscriptBox["z", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "763537"]], "+", RowBox[List["580684", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2016", " ", SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["7", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02