|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.a7qp.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(23/4), 19/4, 1/2, z] ==
(1/42) (Sqrt[1 - Sqrt[z]] (21 + 229 Sqrt[z] - 1030 z - 4500 z^(3/2) +
8080 z^2 + 24752 z^(5/2) - 22176 z^3 - 55552 z^(7/2) + 24832 z^4 +
54528 z^(9/2) - 9728 z^5 - 19456 z^(11/2)) +
Sqrt[1 + Sqrt[z]] (21 - 229 Sqrt[z] - 1030 z + 4500 z^(3/2) + 8080 z^2 -
24752 z^(5/2) - 22176 z^3 + 55552 z^(7/2) + 24832 z^4 - 54528 z^(9/2) -
9728 z^5 + 19456 z^(11/2)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", FractionBox["19", "4"], ",", FractionBox["1", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "42"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List["21", "+", RowBox[List["229", " ", SqrtBox["z"]]], "-", RowBox[List["1030", " ", "z"]], "-", RowBox[List["4500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["8080", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["24752", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["22176", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["55552", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["24832", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54528", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["9728", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["19456", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List["21", "-", RowBox[List["229", " ", SqrtBox["z"]]], "-", RowBox[List["1030", " ", "z"]], "+", RowBox[List["4500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["8080", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["24752", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["22176", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["55552", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["24832", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["54528", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["9728", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19456", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 23 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["23", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["19", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 42 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 19456 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9728 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 54528 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24832 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 55552 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 22176 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24752 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1030 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 229 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 19456 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9728 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 54528 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 24832 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 55552 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 22176 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24752 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1030 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 229 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 23 <sep /> 4 </cn> </apply> <cn type='rational'> 19 <sep /> 4 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 42 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -19456 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9728 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 54528 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 24832 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 55552 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 22176 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24752 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1030 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 229 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 21 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 19456 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9728 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 54528 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24832 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 55552 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 22176 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24752 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4500 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1030 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 229 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 21 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["23", "4"]]], ",", FractionBox["19", "4"], ",", FractionBox["1", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "42"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List["21", "+", RowBox[List["229", " ", SqrtBox["z"]]], "-", RowBox[List["1030", " ", "z"]], "-", RowBox[List["4500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["8080", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["24752", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["22176", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["55552", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["24832", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["54528", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["9728", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["19456", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List["21", "-", RowBox[List["229", " ", SqrtBox["z"]]], "-", RowBox[List["1030", " ", "z"]], "+", RowBox[List["4500", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["8080", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["24752", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["22176", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["55552", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["24832", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["54528", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["9728", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["19456", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|