|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.a7zp.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/2), 1/4, 6, z] ==
(8 Sqrt[2] (-2 (1 - z)^(1/4) (-393216 + 4755456 z - 27369216 z^2 +
103627776 z^3 - 335905920 z^4 - 650887104 z^5 + 249791024 z^6 -
95583984 z^7 + 27294564 z^8 - 4930310 z^9 + 416955 z^10)
EllipticE[(2 (-1 + Sqrt[1 - z]) (1 - z)^(1/4) + z)/(2 z)] -
2 (1 - z)^(3/4) (-393216 + 4755456 z - 27369216 z^2 + 103627776 z^3 -
335905920 z^4 - 650887104 z^5 + 249791024 z^6 - 95583984 z^7 +
27294564 z^8 - 4930310 z^9 + 416955 z^10)
EllipticE[(2 (-1 + Sqrt[1 - z]) (1 - z)^(1/4) + z)/(2 z)] +
(-393216 + 4952064 z - 29710080 z^2 + 116884992 z^3 - 385365120 z^4 +
959816256 z^5 + 88582256 z^6 - 33450640 z^7 + 9398388 z^8 -
1669910 z^9 + 138985 z^10) EllipticK[
(2 (-1 + Sqrt[1 - z]) (1 - z)^(1/4) + z)/(2 z)] +
(1 - z)^(1/4) (-393216 + 4755456 z - 27369216 z^2 + 103627776 z^3 -
335905920 z^4 - 650887104 z^5 + 249791024 z^6 - 95583984 z^7 +
27294564 z^8 - 4930310 z^9 + 416955 z^10)
EllipticK[(2 (-1 + Sqrt[1 - z]) (1 - z)^(1/4) + z)/(2 z)] +
Sqrt[1 - z] (-393216 + 4755456 z - 27369216 z^2 + 103627776 z^3 -
335905920 z^4 - 650887104 z^5 + 249791024 z^6 - 95583984 z^7 +
27294564 z^8 - 4930310 z^9 + 416955 z^10)
EllipticK[(2 (-1 + Sqrt[1 - z]) (1 - z)^(1/4) + z)/(2 z)] +
(1 - z)^(3/4) (-393216 + 4755456 z - 27369216 z^2 + 103627776 z^3 -
335905920 z^4 - 650887104 z^5 + 249791024 z^6 - 95583984 z^7 +
27294564 z^8 - 4930310 z^9 + 416955 z^10)
EllipticK[(2 (-1 + Sqrt[1 - z]) (1 - z)^(1/4) + z)/(2 z)]))/
(5805264465 Pi Sqrt[1 + Sqrt[1 - z]] z^5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["1", "4"], ",", "6", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["8", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4952064", " ", "z"]], "-", RowBox[List["29710080", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["116884992", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["385365120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["959816256", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["88582256", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["33450640", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["9398388", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["1669910", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["138985", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["5805264465", " ", "\[Pi]", " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]], " ", SuperscriptBox["z", "5"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 6 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 416955 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4930310 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27294564 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 95583984 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 249791024 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 650887104 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 335905920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 103627776 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27369216 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4755456 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 393216 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 416955 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4930310 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27294564 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 95583984 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 249791024 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 650887104 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 335905920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 103627776 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27369216 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4755456 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 393216 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 138985 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1669910 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9398388 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 33450640 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 88582256 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 959816256 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 385365120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 116884992 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 29710080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4952064 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 393216 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 416955 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4930310 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27294564 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 95583984 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 249791024 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 650887104 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 335905920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 103627776 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27369216 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4755456 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 393216 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 416955 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4930310 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27294564 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 95583984 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 249791024 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 650887104 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 335905920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 103627776 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27369216 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4755456 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 393216 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 416955 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4930310 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27294564 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 95583984 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 249791024 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 650887104 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 335905920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 103627776 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27369216 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4755456 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 393216 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5805264465 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </list> <list> <cn type='integer'> 6 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 416955 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4930310 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27294564 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 95583984 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 249791024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 650887104 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 335905920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 103627776 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27369216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4755456 </cn> <ci> z </ci> </apply> <cn type='integer'> -393216 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 416955 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4930310 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27294564 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 95583984 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 249791024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 650887104 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 335905920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 103627776 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27369216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4755456 </cn> <ci> z </ci> </apply> <cn type='integer'> -393216 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 138985 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1669910 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9398388 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 33450640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 88582256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 959816256 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 385365120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 116884992 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 29710080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4952064 </cn> <ci> z </ci> </apply> <cn type='integer'> -393216 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 416955 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4930310 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27294564 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 95583984 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 249791024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 650887104 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 335905920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 103627776 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27369216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4755456 </cn> <ci> z </ci> </apply> <cn type='integer'> -393216 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 416955 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4930310 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27294564 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 95583984 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 249791024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 650887104 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 335905920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 103627776 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27369216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4755456 </cn> <ci> z </ci> </apply> <cn type='integer'> -393216 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 416955 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4930310 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27294564 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 95583984 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 249791024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 650887104 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 335905920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 103627776 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27369216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4755456 </cn> <ci> z </ci> </apply> <cn type='integer'> -393216 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 5805264465 </cn> <pi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", FractionBox["1", "4"], ",", "6", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["8", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4952064", " ", "z"]], "-", RowBox[List["29710080", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["116884992", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["385365120", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["959816256", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["88582256", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["33450640", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["9398388", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["1669910", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["138985", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "393216"]], "+", RowBox[List["4755456", " ", "z"]], "-", RowBox[List["27369216", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["103627776", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["335905920", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["650887104", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["249791024", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["95583984", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["27294564", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4930310", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["416955", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]], "+", "z"]], RowBox[List["2", " ", "z"]]], "]"]]]]]], ")"]]]], RowBox[List["5805264465", " ", "\[Pi]", " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]], " ", SuperscriptBox["z", "5"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|