![](/common/images/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
http://functions.wolfram.com/07.23.03.a8tw.01
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Hypergeometric2F1[-(21/4), 17/4, 5/2, -z] ==
(2 Sqrt[2] (-238 + 8806 z + 218674 z^2 + 1216662 z^3 + 2912448 z^4 +
3482336 z^5 + 2055680 z^6 + 478720 z^7 - (1/Sqrt[1 + z])
(-238 + 8687 z + 169028 z^2 + 821951 z^3 + 1781736 z^4 + 1968208 z^5 +
1087680 z^6 + 239360 z^7)))/(216315 z^(3/2) Sqrt[-1 + Sqrt[1 + z]])
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["21", "4"]]], ",", FractionBox["17", "4"], ",", FractionBox["5", "2"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "238"]], "+", RowBox[List["8806", " ", "z"]], "+", RowBox[List["218674", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1216662", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2912448", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3482336", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2055680", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["478720", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["1", "+", "z"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", "238"]], "+", RowBox[List["8687", " ", "z"]], "+", RowBox[List["169028", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["821951", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1781736", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1968208", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1087680", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["239360", " ", SuperscriptBox["z", "7"]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["216315", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], ")"]]]]]]]]
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 17 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["21", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["17", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["5", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 216315 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 478720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2055680 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3482336 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2912448 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1216662 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 218674 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8806 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 239360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1087680 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1968208 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1781736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 821951 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 169028 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8687 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 238 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 238 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </apply> <cn type='rational'> 17 <sep /> 4 </cn> </list> <list> <cn type='rational'> 5 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 216315 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 478720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2055680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3482336 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2912448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1216662 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 218674 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8806 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 239360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1087680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1968208 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1781736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 821951 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 169028 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8687 </cn> <ci> z </ci> </apply> <cn type='integer'> -238 </cn> </apply> </apply> </apply> <cn type='integer'> -238 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/clear.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| | ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["21", "4"]]], ",", FractionBox["17", "4"], ",", FractionBox["5", "2"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "238"]], "+", RowBox[List["8806", " ", "z"]], "+", RowBox[List["218674", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1216662", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2912448", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3482336", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2055680", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["478720", " ", SuperscriptBox["z", "7"]]], "-", FractionBox[RowBox[List[RowBox[List["-", "238"]], "+", RowBox[List["8687", " ", "z"]], "+", RowBox[List["169028", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["821951", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1781736", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1968208", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1087680", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["239360", " ", SuperscriptBox["z", "7"]]]]], SqrtBox[RowBox[List["1", "+", "z"]]]]]], ")"]]]], RowBox[List["216315", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]]]]] |
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
| ![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
Date Added to functions.wolfram.com (modification date)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
![](/images/home/spacer.gif)
|
|
![](/common/images/spacer.gif) |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|