  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.23.03.aad2.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Hypergeometric2F1[-(17/4), -(7/4), 4, z] == (1/(10548412875 Pi z^3)) 
  (256 Sqrt[1 + Sqrt[z]] ((21216 - 361335 z + 4214691 z^2 + 121473110 z^3 + 
      155820790 z^4 + 21844053 z^5 - 1075305 z^6 + 52668 z^7) 
     EllipticE[(2 Sqrt[z])/(1 + Sqrt[z])] + 
    (-21216 + 21216 Sqrt[z] + 345423 z - 345423 z^(3/2) - 3958110 z^2 + 
      3958110 z^(5/2) - 41992670 z^3 + 41992670 z^(7/2) - 29383720 z^4 + 
      29383720 z^(9/2) - 513513 z^5 + 513513 z^(11/2) + 26334 z^6 - 
      26334 z^(13/2)) EllipticK[(2 Sqrt[z])/(1 + Sqrt[z])])) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["17", "4"]]], ",", RowBox[List["-", FractionBox["7", "4"]]], ",", "4", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["10548412875", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["256", " ", SqrtBox[RowBox[List["1", "+", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["21216", "-", RowBox[List["361335", " ", "z"]], "+", RowBox[List["4214691", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["121473110", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["155820790", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["21844053", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1075305", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["52668", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List["2", " ", SqrtBox["z"]]], RowBox[List["1", "+", SqrtBox["z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "21216"]], "+", RowBox[List["21216", " ", SqrtBox["z"]]], "+", RowBox[List["345423", " ", "z"]], "-", RowBox[List["345423", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["3958110", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3958110", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["41992670", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["41992670", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["29383720", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["29383720", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["513513", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["513513", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["26334", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["26334", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List["2", " ", SqrtBox["z"]]], RowBox[List["1", "+", SqrtBox["z"]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 17 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mn> 4 </mn>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["17", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["7", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 10548412875 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 256 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 52668 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1075305 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 21844053 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 155820790 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 121473110 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4214691 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 361335 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 21216 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 26334 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 26334 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 513513 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 513513 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 29383720 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 9 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 29383720 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 41992670 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 41992670 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3958110 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3958110 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 345423 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 345423 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 21216 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 21216 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 17 <sep /> 4 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 4 </cn>  </apply>  </list>  <list>  <cn type='integer'> 4 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 10548412875 </cn>  <pi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 256 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 52668 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1075305 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 21844053 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 155820790 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 121473110 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4214691 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 361335 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 21216 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -26334 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 13 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 26334 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 513513 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 513513 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 29383720 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 29383720 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 41992670 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 41992670 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3958110 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3958110 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 345423 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 345423 </cn>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> 21216 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -21216 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["17", "4"]]], ",", RowBox[List["-", FractionBox["7", "4"]]], ",", "4", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["256", " ", SqrtBox[RowBox[List["1", "+", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["21216", "-", RowBox[List["361335", " ", "z"]], "+", RowBox[List["4214691", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["121473110", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["155820790", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["21844053", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["1075305", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["52668", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List["2", " ", SqrtBox["z"]]], RowBox[List["1", "+", SqrtBox["z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "21216"]], "+", RowBox[List["21216", " ", SqrtBox["z"]]], "+", RowBox[List["345423", " ", "z"]], "-", RowBox[List["345423", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["3958110", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["3958110", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["41992670", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["41992670", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["29383720", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["29383720", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["513513", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["513513", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["26334", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["26334", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List["2", " ", SqrtBox["z"]]], RowBox[List["1", "+", SqrtBox["z"]]]], "]"]]]]]], ")"]]]], RowBox[List["10548412875", " ", "\[Pi]", " ", SuperscriptBox["z", "3"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |