|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.abh0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(15/4), 7/4, 6, -z] == (1/(5492021535 Pi z^5))
(16384 (1 + z)^(1/4) (2 (22528 + 155936 z + 437745 z^2 + 582120 z^3 +
150150 z^4 + 263484 z^5 + 184353 z^6 + 64740 z^7 + 9360 z^8)
EllipticE[1/2 - 1/(2 Sqrt[1 + z])] -
(22528 + 155936 z + 437745 z^2 + 582120 z^3 + 150150 z^4 + 263484 z^5 +
184353 z^6 + 64740 z^7 + 9360 z^8) EllipticK[1/2 - 1/(2 Sqrt[1 + z])] +
Sqrt[1 + z] (-22528 - 139040 z - 336105 z^2 - 345345 z^3 + 75075 z^4 +
322101 z^5 + 283530 z^6 + 115440 z^7 + 18720 z^8)
EllipticK[1/2 - 1/(2 Sqrt[1 + z])]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["15", "4"]]], ",", FractionBox["7", "4"], ",", "6", ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["5492021535", " ", "\[Pi]", " ", SuperscriptBox["z", "5"]]]], RowBox[List["(", RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["22528", "+", RowBox[List["155936", " ", "z"]], "+", RowBox[List["437745", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["582120", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["150150", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["263484", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["184353", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["64740", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["9360", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["22528", "+", RowBox[List["155936", " ", "z"]], "+", RowBox[List["437745", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["582120", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["150150", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["263484", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["184353", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["64740", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["9360", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "22528"]], "-", RowBox[List["139040", " ", "z"]], "-", RowBox[List["336105", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["345345", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["75075", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["322101", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["283530", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["115440", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["18720", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 15 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 6 </mn> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["15", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["7", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 5492021535 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 16384 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 64740 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 184353 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 263484 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 150150 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 582120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 437745 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 155936 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 22528 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 64740 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 184353 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 263484 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 150150 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 582120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 437745 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 155936 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 22528 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 115440 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 283530 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 322101 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 75075 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 345345 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 336105 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 139040 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 22528 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 15 <sep /> 4 </cn> </apply> <cn type='rational'> 7 <sep /> 4 </cn> </list> <list> <cn type='integer'> 6 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 5492021535 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 9360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 64740 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 184353 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 263484 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 150150 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 582120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 437745 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 155936 </cn> <ci> z </ci> </apply> <cn type='integer'> 22528 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 9360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 64740 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 184353 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 263484 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 150150 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 582120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 437745 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 155936 </cn> <ci> z </ci> </apply> <cn type='integer'> 22528 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 18720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 115440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 283530 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 322101 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 75075 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 345345 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 336105 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 139040 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -22528 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["15", "4"]]], ",", FractionBox["7", "4"], ",", "6", ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["16384", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["22528", "+", RowBox[List["155936", " ", "z"]], "+", RowBox[List["437745", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["582120", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["150150", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["263484", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["184353", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["64740", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["9360", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["22528", "+", RowBox[List["155936", " ", "z"]], "+", RowBox[List["437745", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["582120", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["150150", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["263484", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["184353", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["64740", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["9360", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "22528"]], "-", RowBox[List["139040", " ", "z"]], "-", RowBox[List["336105", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["345345", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["75075", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["322101", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["283530", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["115440", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["18720", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["5492021535", " ", "\[Pi]", " ", SuperscriptBox["z", "5"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|