| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.acsh.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(13/4), 19/4, -(11/2), z] == 
 (1/(4553472 Pi^(3/2))) 
  (((1/(-1 + z)^7) (2 (-1138368 + 4631088 z - 5609912 z^2 + 698775 z^3 + 
       578347 z^4 + 973973 z^5 + 4710321 z^6 - 17457344 z^7 + 19658240 z^8 - 
       9732096 z^9 + 1835008 z^10) EllipticE[(1/2) (1 - Sqrt[z])]) + 
    (1/(-1 + z)^7) (2 (-1138368 + 4631088 z - 5609912 z^2 + 698775 z^3 + 
       578347 z^4 + 973973 z^5 + 4710321 z^6 - 17457344 z^7 + 19658240 z^8 - 
       9732096 z^9 + 1835008 z^10) EllipticE[(1/2) (1 + Sqrt[z])]) + 
    (1/((-1 + Sqrt[z])^7 (1 + Sqrt[z])^6)) 
     ((1138368 - 569184 Sqrt[z] - 4061904 z + 1793792 z^(3/2) + 3816120 z^2 - 
       1180410 z^(5/2) + 481635 z^3 - 678370 z^(7/2) + 100023 z^4 - 
       352814 z^(9/2) - 621159 z^5 + 134442 z^(11/2) - 4844763 z^6 + 
       8151104 z^(13/2) + 9306240 z^7 - 13606400 z^(15/2) - 6051840 z^8 + 
       8355840 z^(17/2) + 1376256 z^9 - 1835008 z^(19/2)) 
      EllipticK[(1/2) (1 - Sqrt[z])]) - 
    (1/((-1 + Sqrt[z])^6 (1 + Sqrt[z])^7)) 
     ((1138368 + 569184 Sqrt[z] - 4061904 z - 1793792 z^(3/2) + 3816120 z^2 + 
       1180410 z^(5/2) + 481635 z^3 + 678370 z^(7/2) + 100023 z^4 + 
       352814 z^(9/2) - 621159 z^5 - 134442 z^(11/2) - 4844763 z^6 - 
       8151104 z^(13/2) + 9306240 z^7 + 13606400 z^(15/2) - 6051840 z^8 - 
       8355840 z^(17/2) + 1376256 z^9 + 1835008 z^(19/2)) 
      EllipticK[(1/2) (1 + Sqrt[z])])) Gamma[1/4]^2) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["13", "4"]]], ",", FractionBox["19", "4"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4553472", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "7"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1138368"]], "+", RowBox[List["4631088", " ", "z"]], "-", RowBox[List["5609912", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["698775", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["578347", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["973973", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["4710321", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["17457344", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["19658240", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["9732096", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "7"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1138368"]], "+", RowBox[List["4631088", " ", "z"]], "-", RowBox[List["5609912", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["698775", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["578347", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["973973", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["4710321", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["17457344", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["19658240", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["9732096", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "7"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "6"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1138368", "-", RowBox[List["569184", " ", SqrtBox["z"]]], "-", RowBox[List["4061904", " ", "z"]], "+", RowBox[List["1793792", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["3816120", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1180410", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["481635", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["678370", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["100023", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["352814", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["621159", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["134442", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["4844763", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8151104", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["9306240", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["13606400", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["6051840", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["8355840", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["1376256", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1835008", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "7"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1138368", "+", RowBox[List["569184", " ", SqrtBox["z"]]], "-", RowBox[List["4061904", " ", "z"]], "-", RowBox[List["1793792", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["3816120", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1180410", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["481635", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["678370", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["100023", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["352814", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["621159", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["134442", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["4844763", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["8151104", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["9306240", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["13606400", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["6051840", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["8355840", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["1376256", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["1", "4"], "]"]], "2"]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 13 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 19 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 11 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["13", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["19", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 4553472 </mn>  <mo> ⁢ </mo>  <msup>  <mi> π </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 7 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1835008 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 9732096 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 19658240 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 17457344 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4710321 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 973973 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 578347 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 698775 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 5609912 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4631088 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 1138368 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 7 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1835008 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 9732096 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 19658240 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 17457344 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4710321 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 973973 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 578347 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 698775 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 5609912 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4631088 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 1138368 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 7 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1835008 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 19 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1376256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8355840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 17 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6051840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 13606400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 15 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 9306240 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8151104 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4844763 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 134442 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 621159 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 352814 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 9 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 100023 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 678370 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 481635 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1180410 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3816120 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1793792 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4061904 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 569184 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 1138368 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 7 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1835008 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 19 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1376256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8355840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 17 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6051840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13606400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 15 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 9306240 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8151104 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4844763 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 134442 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 621159 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 352814 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 9 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 100023 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 678370 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 481635 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1180410 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3816120 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1793792 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4061904 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 569184 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 1138368 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 13 <sep /> 4 </cn>  </apply>  <cn type='rational'> 19 <sep /> 4 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4553472 </cn>  <apply>  <power />  <pi />  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 7 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1835008 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 9732096 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 19658240 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 17457344 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4710321 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 973973 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 578347 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 698775 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5609912 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4631088 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1138368 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 7 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1835008 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 9732096 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 19658240 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 17457344 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4710321 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 973973 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 578347 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 698775 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5609912 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4631088 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1138368 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 7 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1835008 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 19 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1376256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8355840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 17 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6051840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 13606400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 15 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 9306240 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8151104 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 13 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4844763 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 134442 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 621159 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 352814 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 100023 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 678370 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 481635 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1180410 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3816120 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1793792 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4061904 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 569184 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1138368 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 6 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1835008 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 19 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1376256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8355840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 17 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6051840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13606400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 15 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 9306240 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8151104 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 13 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4844763 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 134442 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 621159 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 352814 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 100023 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 678370 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 481635 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1180410 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3816120 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1793792 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4061904 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 569184 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1138368 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["13", "4"]]], ",", FractionBox["19", "4"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1138368"]], "+", RowBox[List["4631088", " ", "z"]], "-", RowBox[List["5609912", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["698775", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["578347", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["973973", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["4710321", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["17457344", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["19658240", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["9732096", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "7"]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1138368"]], "+", RowBox[List["4631088", " ", "z"]], "-", RowBox[List["5609912", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["698775", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["578347", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["973973", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["4710321", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["17457344", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["19658240", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["9732096", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "7"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1138368", "-", RowBox[List["569184", " ", SqrtBox["z"]]], "-", RowBox[List["4061904", " ", "z"]], "+", RowBox[List["1793792", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["3816120", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1180410", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["481635", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["678370", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["100023", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["352814", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["621159", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["134442", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["4844763", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8151104", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["9306240", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["13606400", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["6051840", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["8355840", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["1376256", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1835008", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "7"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "6"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1138368", "+", RowBox[List["569184", " ", SqrtBox["z"]]], "-", RowBox[List["4061904", " ", "z"]], "-", RowBox[List["1793792", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["3816120", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1180410", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["481635", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["678370", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["100023", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["352814", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["621159", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["134442", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["4844763", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["8151104", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["9306240", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["13606400", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "-", RowBox[List["6051840", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["8355840", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["1376256", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1835008", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "7"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["1", "4"], "]"]], "2"]]], RowBox[List["4553472", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |