|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.addp.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/4), 9/4, 6, -z] ==
(16384 Sqrt[2] (Sqrt[1 + z] (-2048 - 9760 z - 16227 z^2 - 7315 z^3 +
7315 z^4 + 16227 z^5 + 9760 z^6 + 2048 z^7)
EllipticE[(-1 + Sqrt[1 + z])/(1 + Sqrt[1 + z])] +
(-2048 - 11808 z - 25987 z^2 - 23542 z^3 + 23542 z^5 + 25987 z^6 +
11808 z^7 + 2048 z^8) EllipticE[(-1 + Sqrt[1 + z])/(1 + Sqrt[1 + z])] -
(-2048 - 11296 z - 23403 z^2 - 18865 z^3 + 2695 z^4 + 4677 z^5 +
2584 z^6 + 512 z^7) EllipticK[(-1 + Sqrt[1 + z])/(1 + Sqrt[1 + z])] -
Sqrt[1 + z] (-2048 - 9760 z - 16227 z^2 - 7315 z^3 + 7315 z^4 +
16227 z^5 + 9760 z^6 + 2048 z^7) EllipticK[(-1 + Sqrt[1 + z])/
(1 + Sqrt[1 + z])]))/(140821065 Pi z^5 Sqrt[1 + Sqrt[1 + z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "4"]]], ",", FractionBox["9", "4"], ",", "6", ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["16384", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["9760", " ", "z"]], "-", RowBox[List["16227", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7315", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16227", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["9760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["11808", " ", "z"]], "-", RowBox[List["25987", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["23542", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["23542", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["25987", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["11808", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["11296", " ", "z"]], "-", RowBox[List["23403", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["18865", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2695", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4677", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2584", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["9760", " ", "z"]], "-", RowBox[List["16227", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7315", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16227", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["9760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["140821065", " ", "\[Pi]", " ", SuperscriptBox["z", "5"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 9 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 6 </mn> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["9", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 16384 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16227 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7315 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7315 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16227 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9760 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2048 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11808 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25987 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 23542 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23542 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 25987 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11808 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2048 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2584 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4677 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2695 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 18865 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23403 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11296 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2048 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 16227 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7315 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7315 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16227 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9760 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2048 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 140821065 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 4 </cn> </apply> <cn type='rational'> 9 <sep /> 4 </cn> </list> <list> <cn type='integer'> 6 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 16384 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16227 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7315 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7315 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16227 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9760 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -2048 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11808 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25987 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 23542 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23542 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25987 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11808 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -2048 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2584 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4677 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2695 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 18865 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23403 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11296 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -2048 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9760 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16227 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7315 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7315 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16227 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9760 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -2048 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 140821065 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "4"]]], ",", FractionBox["9", "4"], ",", "6", ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["16384", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["9760", " ", "z"]], "-", RowBox[List["16227", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7315", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16227", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["9760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["11808", " ", "z"]], "-", RowBox[List["25987", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["23542", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["23542", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["25987", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["11808", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["11296", " ", "z"]], "-", RowBox[List["23403", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["18865", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2695", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4677", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2584", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2048"]], "-", RowBox[List["9760", " ", "z"]], "-", RowBox[List["16227", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7315", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["7315", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["16227", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["9760", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "7"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]]]], ")"]]]], RowBox[List["140821065", " ", "\[Pi]", " ", SuperscriptBox["z", "5"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|