| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.aewt.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(7/4), 1/4, 5, -z] == 
 (4096 Sqrt[2] (2 Sqrt[1 + z] (-64 - 424 z - 1271 z^2 - 2616 z^3 + 1045 z^4 + 
      110 z^5) EllipticE[(-1 + Sqrt[1 + z])/(1 + Sqrt[1 + z])] + 
    2 (-64 - 488 z - 1695 z^2 - 3887 z^3 - 1571 z^4 + 1155 z^5 + 110 z^6) 
     EllipticE[(-1 + Sqrt[1 + z])/(1 + Sqrt[1 + z])] - 
    (-128 - 944 z - 3169 z^2 - 7083 z^3 - 15235 z^4 + 55 z^5) 
     EllipticK[(-1 + Sqrt[1 + z])/(1 + Sqrt[1 + z])] - 
    2 Sqrt[1 + z] (-64 - 424 z - 1271 z^2 - 2616 z^3 + 1045 z^4 + 110 z^5) 
     EllipticK[(-1 + Sqrt[1 + z])/(1 + Sqrt[1 + z])]))/
  (27760425 Pi z^4 Sqrt[1 + Sqrt[1 + z]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["7", "4"]]], ",", FractionBox["1", "4"], ",", "5", ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["4096", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64"]], "-", RowBox[List["424", " ", "z"]], "-", RowBox[List["1271", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2616", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1045", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["110", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64"]], "-", RowBox[List["488", " ", "z"]], "-", RowBox[List["1695", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["3887", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1571", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1155", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["110", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "128"]], "-", RowBox[List["944", " ", "z"]], "-", RowBox[List["3169", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7083", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["15235", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["55", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64"]], "-", RowBox[List["424", " ", "z"]], "-", RowBox[List["1271", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2616", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1045", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["110", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["27760425", " ", "\[Pi]", " ", SuperscriptBox["z", "4"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mn> 5 </mn>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["5", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 27760425 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 4096 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 110 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1045 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2616 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1271 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 424 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 64 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 110 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1155 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1571 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3887 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1695 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 488 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 64 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 55 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 15235 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 7083 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3169 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 944 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 128 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 110 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1045 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2616 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1271 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 424 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 64 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 4 </cn>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </list>  <list>  <cn type='integer'> 5 </cn>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 27760425 </cn>  <pi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4096 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 110 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1045 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2616 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1271 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 424 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -64 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 110 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1155 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1571 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3887 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1695 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 488 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -64 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 55 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 15235 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 7083 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3169 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 944 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -128 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 110 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1045 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2616 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1271 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 424 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -64 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["7", "4"]]], ",", FractionBox["1", "4"], ",", "5", ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["4096", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64"]], "-", RowBox[List["424", " ", "z"]], "-", RowBox[List["1271", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2616", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1045", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["110", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64"]], "-", RowBox[List["488", " ", "z"]], "-", RowBox[List["1695", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["3887", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1571", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1155", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["110", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "128"]], "-", RowBox[List["944", " ", "z"]], "-", RowBox[List["3169", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["7083", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["15235", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["55", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "64"]], "-", RowBox[List["424", " ", "z"]], "-", RowBox[List["1271", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2616", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1045", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["110", " ", SuperscriptBox["z", "5"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]], RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "]"]]]]]], ")"]]]], RowBox[List["27760425", " ", "\[Pi]", " ", SuperscriptBox["z", "4"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |