|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.aht6.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(1/4), 19/4, -(3/2), z] ==
(1/(11088 Pi^(3/2)))
(((1/(-1 + z)^6) (2 (2772 - 14091 z + 17325 z^2 - 31465 z^3 + 26835 z^4 -
11616 z^5 + 2048 z^6) EllipticE[(1/2) (1 - Sqrt[z])]) +
(1/(-1 + z)^6) (2 (2772 - 14091 z + 17325 z^2 - 31465 z^3 + 26835 z^4 -
11616 z^5 + 2048 z^6) EllipticE[(1/2) (1 + Sqrt[z])]) +
(1/((-1 + Sqrt[z])^6 (1 + Sqrt[z])^5))
((-2772 + 1386 Sqrt[z] + 12705 z - 5775 z^(3/2) - 11550 z^2 +
17920 z^(5/2) + 13545 z^3 - 19515 z^(7/2) - 7320 z^4 + 10080 z^(9/2) +
1536 z^5 - 2048 z^(11/2)) EllipticK[(1/2) (1 - Sqrt[z])]) +
(1/((-1 + Sqrt[z])^5 (1 + Sqrt[z])^6))
((2772 + 1386 Sqrt[z] - 12705 z - 5775 z^(3/2) + 11550 z^2 +
17920 z^(5/2) - 13545 z^3 - 19515 z^(7/2) + 7320 z^4 + 10080 z^(9/2) -
1536 z^5 - 2048 z^(11/2)) EllipticK[(1/2) (1 + Sqrt[z])]))
Gamma[1/4]^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", FractionBox["19", "4"], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["11088", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "6"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["2772", "-", RowBox[List["14091", " ", "z"]], "+", RowBox[List["17325", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["31465", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26835", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11616", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "6"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["2772", "-", RowBox[List["14091", " ", "z"]], "+", RowBox[List["17325", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["31465", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26835", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11616", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "5"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2772"]], "+", RowBox[List["1386", " ", SqrtBox["z"]]], "+", RowBox[List["12705", " ", "z"]], "-", RowBox[List["5775", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["11550", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17920", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["13545", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["19515", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["7320", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["10080", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["1536", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2048", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "5"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "6"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2772", "+", RowBox[List["1386", " ", SqrtBox["z"]]], "-", RowBox[List["12705", " ", "z"]], "-", RowBox[List["5775", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["11550", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17920", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["13545", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["19515", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["7320", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["10080", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["1536", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2048", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["1", "4"], "]"]], "2"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 19 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["1", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["19", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["3", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 11088 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11616 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26835 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 31465 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17325 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14091 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2772 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11616 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26835 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 31465 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17325 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14091 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2772 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2048 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1536 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7320 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 19515 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13545 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11550 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5775 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12705 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 1386 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mn> 2772 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2048 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1536 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7320 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 19515 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13545 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11550 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5775 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12705 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 1386 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 2772 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='rational'> 19 <sep /> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 11088 </cn> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11616 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 26835 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 31465 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17325 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14091 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2772 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11616 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 26835 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 31465 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17325 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14091 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2772 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2048 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10080 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 19515 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 13545 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11550 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5775 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12705 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 1386 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -2772 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2048 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10080 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 19515 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13545 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11550 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5775 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12705 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1386 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2772 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], ",", FractionBox["19", "4"], ",", RowBox[List["-", FractionBox["3", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["2772", "-", RowBox[List["14091", " ", "z"]], "+", RowBox[List["17325", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["31465", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26835", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11616", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "6"]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["2772", "-", RowBox[List["14091", " ", "z"]], "+", RowBox[List["17325", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["31465", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["26835", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["11616", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "6"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2772"]], "+", RowBox[List["1386", " ", SqrtBox["z"]]], "+", RowBox[List["12705", " ", "z"]], "-", RowBox[List["5775", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["11550", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17920", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["13545", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["19515", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["7320", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["10080", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["1536", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2048", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "5"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2772", "+", RowBox[List["1386", " ", SqrtBox["z"]]], "-", RowBox[List["12705", " ", "z"]], "-", RowBox[List["5775", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["11550", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["17920", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["13545", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["19515", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["7320", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["10080", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["1536", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2048", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["z"]]], ")"]], "5"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], "6"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["1", "4"], "]"]], "2"]]], RowBox[List["11088", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|