| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.an1k.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[4, 6, -(7/4), z] == 
 (1/58720256) (-((1/(-1 + z)^11) (8 (7340032 - 181403648 z + 3859808256 z^2 + 
       56200550755 z^3 + 93348120232 z^4 + 29805746832 z^5 + 654674944 z^6 - 
       17228288 z^7))) - (1/(1 - z)^(47/4)) (281642130 Sqrt[2] z^(11/4) 
     (437 + 1748 z + 1472 z^2 + 256 z^3) 
     ArcTan[1 - z^(1/4)/(Sqrt[2] (1 - z)^(1/4)), 
      -(z^(1/4)/(Sqrt[2] (1 - z)^(1/4)))]) - (1/(1 - z)^(47/4)) 
    (281642130 Sqrt[2] z^(11/4) (437 + 1748 z + 1472 z^2 + 256 z^3) 
     ArcTan[1 + z^(1/4)/(Sqrt[2] (1 - z)^(1/4)), 
      -(z^(1/4)/(Sqrt[2] (1 - z)^(1/4)))]) - 
   (140821065 Sqrt[2] z^(11/4) (437 + 1748 z + 1472 z^2 + 256 z^3) 
     Log[1 - (Sqrt[2] z^(1/4))/(1 - z)^(1/4) + Sqrt[z]/Sqrt[1 - z]])/
    (1 - z)^(47/4) + (140821065 Sqrt[2] z^(11/4) (437 + 1748 z + 1472 z^2 + 
      256 z^3) Log[1 + (Sqrt[2] z^(1/4))/(1 - z)^(1/4) + 
       Sqrt[z]/Sqrt[1 - z]])/(1 - z)^(47/4)) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "6", ",", RowBox[List["-", FractionBox["7", "4"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "58720256"], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "11"]], RowBox[List["(", RowBox[List["8", " ", RowBox[List["(", RowBox[List["7340032", "-", RowBox[List["181403648", " ", "z"]], "+", RowBox[List["3859808256", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["56200550755", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["93348120232", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["29805746832", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["654674944", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["17228288", " ", SuperscriptBox["z", "7"]]]]], ")"]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]], RowBox[List["281642130", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]]], "]"]]]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]], RowBox[List["281642130", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]]], "]"]]]]]], "-", FractionBox[RowBox[List["140821065", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[SqrtBox["z"], SqrtBox[RowBox[List["1", "-", "z"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]], "+", FractionBox[RowBox[List["140821065", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[SqrtBox["z"], SqrtBox[RowBox[List["1", "-", "z"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["7", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 58720256 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 281642130 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1472 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1748 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 437 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 47 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mfrac>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 281642130 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1472 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1748 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 437 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 47 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 140821065 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1472 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1748 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 437 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msqrt>  <mi> z </mi>  </msqrt>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 47 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 140821065 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1472 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1748 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 437 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msqrt>  <mi> z </mi>  </msqrt>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 47 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mfrac>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 11 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 17228288 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 654674944 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 29805746832 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 93348120232 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 56200550755 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3859808256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 181403648 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 7340032 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='integer'> 4 </cn>  <cn type='integer'> 6 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 4 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 58720256 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 281642130 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1472 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1748 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 437 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 47 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 281642130 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1472 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1748 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 437 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 47 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 140821065 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1472 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1748 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 437 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 47 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 140821065 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1472 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1748 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 437 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 47 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 11 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -17228288 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 654674944 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 29805746832 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 93348120232 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 56200550755 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3859808256 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 181403648 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 7340032 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "6", ",", RowBox[List["-", FractionBox["7", "4"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List["7340032", "-", RowBox[List["181403648", " ", "z"]], "+", RowBox[List["3859808256", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["56200550755", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["93348120232", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["29805746832", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["654674944", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["17228288", " ", SuperscriptBox["z", "7"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "11"]]]], "-", FractionBox[RowBox[List["281642130", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]], "-", FractionBox[RowBox[List["281642130", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]], "-", FractionBox[RowBox[List["140821065", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[SqrtBox["z"], SqrtBox[RowBox[List["1", "-", "z"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]], "+", FractionBox[RowBox[List["140821065", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["11", "/", "4"]]], " ", RowBox[List["(", RowBox[List["437", "+", RowBox[List["1748", " ", "z"]], "+", RowBox[List["1472", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["256", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List[SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[SqrtBox["z"], SqrtBox[RowBox[List["1", "-", "z"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["47", "/", "4"]]]]]], "58720256"]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |