  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.23.03.an84.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Hypergeometric2F1[17/4, 23/4, -(11/2), -z] == 
 (1/(704 Sqrt[2] Sqrt[-1 + Sqrt[1 + z]])) 
  (Sqrt[z] ((1/(1 + z)^15) (352 + 6800 z + 65742 z^2 + 437203 z^3 + 
      2392845 z^4 + 13329615 z^5 - 799144595 z^6 + 1372808857 z^7 - 
      554914377 z^8 + 48462325 z^9 - 27807 z^10) + 
    (1/(1 + z)^(31/2)) (2 (176 + 3488 z + 34549 z^2 + 234623 z^3 + 
       1301820 z^4 + 7237620 z^5 + 540957470 z^6 - 1326327686 z^7 + 
       795863948 z^8 - 126715180 z^9 + 2975349 z^10 + 27807 z^11)))) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["17", "4"], ",", FractionBox["23", "4"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["704", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]], RowBox[List["(", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "15"]], RowBox[List["(", RowBox[List["352", "+", RowBox[List["6800", " ", "z"]], "+", RowBox[List["65742", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["437203", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2392845", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["13329615", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["799144595", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1372808857", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["554914377", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["48462325", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["27807", " ", SuperscriptBox["z", "10"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["31", "/", "2"]]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["176", "+", RowBox[List["3488", " ", "z"]], "+", RowBox[List["34549", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["234623", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1301820", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7237620", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["540957470", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1326327686", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["795863948", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["126715180", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["2975349", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["27807", " ", SuperscriptBox["z", "11"]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 17 </mn>  <mn> 4 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 23 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 11 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["17", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["23", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 704 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 15 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 27807 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 48462325 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 554914377 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1372808857 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 799144595 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13329615 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2392845 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 437203 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 65742 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6800 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 352 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 31 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 27807 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 11 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2975349 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 126715180 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 795863948 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1326327686 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 540957470 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 7237620 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1301820 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 234623 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 34549 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3488 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 176 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 17 <sep /> 4 </cn>  <cn type='rational'> 23 <sep /> 4 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 704 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 15 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -27807 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 48462325 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 554914377 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1372808857 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 799144595 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13329615 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2392845 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 437203 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 65742 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6800 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 352 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 31 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 27807 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 11 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2975349 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 126715180 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 795863948 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1326327686 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 540957470 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 7237620 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1301820 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 234623 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 34549 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3488 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 176 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["17", "4"], ",", FractionBox["23", "4"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["352", "+", RowBox[List["6800", " ", "z"]], "+", RowBox[List["65742", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["437203", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2392845", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["13329615", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["799144595", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1372808857", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["554914377", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["48462325", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["27807", " ", SuperscriptBox["z", "10"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "15"]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["176", "+", RowBox[List["3488", " ", "z"]], "+", RowBox[List["34549", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["234623", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1301820", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7237620", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["540957470", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1326327686", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["795863948", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["126715180", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["2975349", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["27807", " ", SuperscriptBox["z", "11"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["31", "/", "2"]]]]]], ")"]]]], RowBox[List["704", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "+", "z"]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |