|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.aod1.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(28/5), 2, 5, z] ==
-((1/(35948 z^4)) (25 (25 (-1 + (1 - z)^(3/5)) - 5 (-32 + 29 (1 - z)^(3/5))
z + 4 (-86 + 65 (1 - z)^(3/5)) z^2 + 140 (1 - z)^(3/5) z^3 -
1330 (1 - z)^(3/5) z^4 + 2450 (1 - z)^(3/5) z^5 -
2380 (1 - z)^(3/5) z^6 + 1340 (1 - z)^(3/5) z^7 -
415 (1 - z)^(3/5) z^8 + 55 (1 - z)^(3/5) z^9)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["28", "5"]]], ",", "2", ",", "5", ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["35948", " ", SuperscriptBox["z", "4"]]]], RowBox[List["(", RowBox[List["25", " ", RowBox[List["(", RowBox[List[RowBox[List["25", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]]]], ")"]]]], "-", RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "32"]], "+", RowBox[List["29", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "86"]], "+", RowBox[List["65", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1330", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2450", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2380", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1340", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["415", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["55", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "9"]]]]], ")"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 28 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mn> 5 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["28", "5"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["5", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 35948 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 25 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 55 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 415 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1340 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2380 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2450 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1330 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 140 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mn> 86 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 29 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mn> 32 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 25 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 28 <sep /> 5 </cn> </apply> <cn type='integer'> 2 </cn> </list> <list> <cn type='integer'> 5 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 35948 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 55 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 415 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1340 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2380 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2450 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1330 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 140 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 65 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -86 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 29 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -32 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 25 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["28", "5"]]], ",", "2", ",", "5", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["25", " ", RowBox[List["(", RowBox[List[RowBox[List["25", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]]]], ")"]]]], "-", RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "32"]], "+", RowBox[List["29", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "86"]], "+", RowBox[List["65", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["140", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["1330", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["2450", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2380", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1340", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["415", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["55", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", "9"]]]]], ")"]]]], RowBox[List["35948", " ", SuperscriptBox["z", "4"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|