| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.azkg.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[1, 6, 2/5, z] == 
 (4096 ((1 - z)^(4/5) - (1 - z)^(3/5) z^(1/5) + (1 - z)^(2/5) z^(2/5) - 
      (1 - z)^(1/5) z^(3/5) + z^(4/5))^5 (15625 + 65277 z - 53820 z^2 + 
     33275 z^3 - 12000 z^4 + 1875 z^5))/(15625 ((1 - z)^(1/5) + z^(1/5)) 
    (2 (1 - z)^(2/5) + (-1 + Sqrt[5]) (1 - z)^(1/5) z^(1/5) + 2 z^(2/5))^6 
    (2 (1 - z)^(2/5) - (1 + Sqrt[5]) (1 - z)^(1/5) z^(1/5) + 2 z^(2/5))^6 
    (-1 + z)^6) + (75348 Sqrt[10 - 2 Sqrt[5]] z^(3/5) 
    ArcTan[1 - ((1 - Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)), 
     -((Sqrt[5/8 + Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))])/
   (78125 (1 - z)^(33/5)) - (75348 Sqrt[2 (5 + Sqrt[5])] z^(3/5) 
    ArcTan[1 - ((1 + Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)), 
     -((Sqrt[5/8 - Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))])/
   (78125 (1 - z)^(33/5)) - (150696 z^(3/5) Log[1 + z^(1/5)/(1 - z)^(1/5)])/
   (78125 (1 - z)^(33/5)) + (37674 (1 + Sqrt[5]) z^(3/5) 
    Log[1 - ((1 - Sqrt[5]) z^(1/5))/(2 (1 - z)^(1/5)) + 
      z^(2/5)/(1 - z)^(2/5)])/(78125 (1 - z)^(33/5)) - 
  (37674 (-1 + Sqrt[5]) z^(3/5) 
    Log[1 - ((1 + Sqrt[5]) z^(1/5))/(2 (1 - z)^(1/5)) + 
      z^(2/5)/(1 - z)^(2/5)])/(78125 (1 - z)^(33/5)) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", "6", ",", FractionBox["2", "5"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4096", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["4", "/", "5"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "5"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]]]], "+", SuperscriptBox["z", RowBox[List["4", "/", "5"]]]]], ")"]], "5"], " ", RowBox[List["(", RowBox[List["15625", "+", RowBox[List["65277", " ", "z"]], "-", RowBox[List["53820", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["33275", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1875", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["15625", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], "+", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["2", "/", "5"]]]]]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["2", "/", "5"]]]]]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "6"]]], ")"]]]], "+", FractionBox[RowBox[List["75348", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "-", FractionBox[RowBox[List["75348", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "-", FractionBox[RowBox[List["150696", " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "+", FractionBox[RowBox[List["37674", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "-", FractionBox[RowBox[List["37674", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 2 </mn>  <mn> 5 </mn>  </mfrac>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["2", "5"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 4096 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1875 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 12000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 33275 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 53820 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 65277 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 15625 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> - </mo>  <mrow>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  <mo> + </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 4 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 5 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 15625 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  <mo> + </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 75348 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 10 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 8 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <msqrt>  <mn> 5 </mn>  </msqrt>  <mn> 8 </mn>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 78125 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 33 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 75348 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 5 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 8 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <msqrt>  <mn> 5 </mn>  </msqrt>  <mn> 8 </mn>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 78125 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 33 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 150696 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 78125 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 33 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 37674 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 78125 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 33 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 37674 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 78125 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 33 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='integer'> 1 </cn>  <cn type='integer'> 6 </cn>  </list>  <list>  <cn type='rational'> 2 <sep /> 5 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 4096 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1875 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 12000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 33275 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 53820 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 65277 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 15625 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 4 <sep /> 5 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 4 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 15625 </cn>  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 6 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 6 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 75348 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 10 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 5 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='rational'> 5 <sep /> 8 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 78125 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 33 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 75348 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <cn type='integer'> 5 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 5 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='rational'> 5 <sep /> 8 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 78125 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 33 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 150696 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 78125 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 33 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 37674 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 78125 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 33 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 37674 </cn>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 78125 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 33 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", "6", ",", FractionBox["2", "5"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["4096", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["4", "/", "5"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["2", "/", "5"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]]]], "+", SuperscriptBox["z", RowBox[List["4", "/", "5"]]]]], ")"]], "5"], " ", RowBox[List["(", RowBox[List["15625", "+", RowBox[List["65277", " ", "z"]], "-", RowBox[List["53820", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["33275", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["12000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1875", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], RowBox[List["15625", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], "+", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["2", "/", "5"]]]]]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["2", "/", "5"]]]]]]], ")"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "6"]]]], "+", FractionBox[RowBox[List["75348", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "-", FractionBox[RowBox[List["75348", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "-", FractionBox[RowBox[List["150696", " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "+", FractionBox[RowBox[List["37674", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]], "-", FractionBox[RowBox[List["37674", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["33", "/", "5"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |